轻松学Pytorch – 全局池化层详解

OpenCV学堂 2021-09-01 23:57

点击上方蓝字关注我们

微信公众号:OpenCV学堂

关注获取更多计算机视觉与深度学习知识

大家好,这是轻松学Pytorch系列的第九篇分享,本篇你将学会什么是全局池化,全局池化的几种典型方式与pytorch相关函数调用。

全局池化

卷积神经网络可以解决回归跟分类问题,但是常见的卷积神经网络到最后都要通过全连接层实现分类,这个其实会导致很多时候神经元数目跟计算量在全连接层暴增,特别对一些回归要求比较高的网络往往会带来一些后遗症。所以陆陆续续有人提出了不同全连接层解决方案,最常见的两个就是把最后卷积层flatten改为全局最大/均值池化,对比一下这两种方式,图示如下:

可以看到全局池化会根据需要产生神经元,神经元个数可控,可调。而flatten方式就是一个硬链接,无法在flatten的时候调整链接数目。全局均值池化输出最常见的做法是把每个通道feature map输出一个神经元(均值结果输出),图示如下:

全局最大池化图示如下,它是取每个feature map的最大值:

全局均值池化跟全局最大池化的输入一般为NxCxHxW,输出为NxCx1x1但是实际上有时候我们还会有另外一个需求,就是全局深度池化,它的输出是Nx1xHxW。这个方式的池化通常会先把数据转换为NxH*WxC的方式,然后使用一维度最大/均值池化在C上完成,最后在转换为Nx1xHxW即可。了解常见几种全局池化方式之后,下面就来一起看看Pytorch中支持的相关函数。

Pytorch全局池化函数与代码演示

Pytorch函数支持全局最大池化与均值池化,相关函数分别为:

全局最大池化

torch.nn.AdaptiveMaxPool2d(output_size, return_indices=False)

全局均值池化

torch.nn.AdaptiveAvgPool2d(output_size)

其中output_size表示输出HxW正常设为HxW=1x1=(1, 1)。代码演示如下:

# 全局均值池化 avg_pooling = torch.nn.AdaptiveAvgPool2d((1,1)) B, C, H, W = input.size() output = avg_pooling(input).view(B, -1) print("全局均值池化:", output.size()) print(output, "\n")
# 全局最大池化 avg_pooling = torch.nn.AdaptiveMaxPool2d((1, 1)) B, C, H, W = input.size() output = avg_pooling(input).view(B, -1) print("全局最大池化:", output.size()) print(output, "\n")

输入为NxCxHxW=1x8x4x4输出结果如下:

但是pytorch中没有全局深度池化函数支持,这个是我在写一个程序时候才发现,后来经过一番折腾,在别人代码的基础上我改写了一个符合我要求的全局深度池化函数。经过测试工作良好。演示如下:

class DeepWise_Pool(torch.nn.MaxPool1d):     def __init__(self, channels, isize):         super(DeepWise_Pool, self).__init__(channels)         self.kernel_size = channels         self.stride = isize
def forward(self, input): n, c, w, h = input.size() input = input.view(n,c,w*h).permute(0,2,1) pooled = torch.nn.functional.max_pool1d(input, self.kernel_size, self.stride, self.padding, self.dilation, self.ceil_mode, self.return_indices) _, _, c = pooled.size() pooled = pooled.permute(0,2,1) return pooled.view(n,c,w,h).view(w, h)

input = torch.randn(1, 8, 4, 4) print("input data:/n", input) print("input data:", input.size()) B, C, W, H = input.size() dw_max_pool = DeepWise_Pool(C, W*H) output = dw_max_pool(input) print("全局深度池化:", output.view(-1, 16).size()) print(output, "\n")

针对输入为NxCxHxW=1x8x4x4深度最大池化运行结果如下:

全局池化优点

关于使用GAP或者全局池化的好处,卷积神经网络在图像分类中,把卷积层作为特征提取,全链接层+softmax作为归回分类,这样方式会导致在全连接层输入神经元太多容易导致过拟合,所以Hinton等人提出了Dropout概念,提高网络泛化能力防止了过拟合发生。但是GAP是另外方式避免全连接层的处理,直接通过全局池化+softmax进行分类,它的优点是更加符合卷积层最后的处理,另外一个优点是GAP不会产生额外的参数,相比全连接层的处理方式,降低整个计算量,此外全局池化还部分保留来输入图像的空间结构信息,所以全局池化在有些时候会是一个特别有用的选择。更多请读该论文:

https://arxiv.org/pdf/1312.4400.pdf

缺点就留给大家来补充吧,欢迎大家积极留言, 我负责上墙!

扫码查看OpenCV4系统化学习路线图


 推荐阅读 

大道至简 | CV系统化学习路线图发布了!

路线图 | 做CV开发者必备技能有哪些?

Pytorh轻松学系列 - 视频课程版本发布了!

OpenCV4 C++学习 必备基础语法知识三

OpenCV4 C++学习 必备基础语法知识二


OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 98浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 105浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 43浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 115浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 66浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 129浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 85浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 40浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 152浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 33浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 52浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 83浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 43浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦