蜂巢无钴电池的影响

原创 汽车电子设计 2021-08-31 07:30

成都车展上,长城汽车欧拉搭载无钴电池的樱桃猫正式亮相。这款车将推出两个版本车型。磷酸铁锂的版本是61kWh,NEDC续航里程为470km;而蜂巢能源提供的无钴锂离子的版本为82.5kWh电池组,NEDC续航为600km,这也是全球首款搭载无钴电池的新能源电动车。我想从这个来探讨一下整体的电池技术方向,并且向蜂巢这边做一些采访沟通。

图1 蜂巢的无钴电池包

第一部分 动力电池的技术方向

从当前的中国动力电池技术路线来看,宁德时代主要涉及了磷酸铁锂、中镍高电压、高镍三元和钠电池等几个方面,分成了高性价比、高能量密度两条大的发展路径,配上了钠电池这样的长期规划。而比亚迪则从三元的电芯化学体系回归到磷酸铁锂,在EV磷酸铁锂和PHEV磷酸铁锂两个方向来做的。国内的二线电池企业,中航锂电、国轩高科、孚能科技也是根据整体的格局来走磷酸铁锂和三元两个技术方向来做战略跟随和替代。这两条技术方向也是成为目前国内主流的技术方向。

第一类 高性价比电池

磷酸铁锂这个化学体系,最大的优点还是对于金属约束少,因此目前随着越来越多的汽车企业也把入门款的车型选择磷酸铁锂。在近两年,磷酸铁锂动力电芯做大电芯的技术路线,质量能量密度介于180-200Wh/kg之间(体积能量密度350Wh/L-450Wh/L)。这和当前三元电池520Wh/L相差无几的数据,能替代65kWh以下的需求。在这里核心的变化,在于磷酸铁锂的电池通过当前去模组化和CTP的方式,实现了高体积利用率的方式。

而在3-5年以后,随着通过材料体系和工艺的优化,磷酸铁锂有望往质量能量密度在210-230Wh/kg(体积能量密度450Wh/L-500Wh/L)的方向走,从大趋势来看,未来磷酸铁锂的技术方向可以把A0-B级入门款的车型全部涵盖掉。特别是我们看到比亚迪目前使用刀片电池的磷酸铁锂的方式,覆盖了所有的车型。

第二类 高性能电芯 高镍路线

这类电池主要的目标是基于高能量密度的方向,做高容量电池,建立在高镍体系和硅碳负极上面。

在当前,高镍电芯的质量能量密度介于240-300Wh/kg(体积能量密度560Wh/L-650Wh/L),快充时间为18-30分钟(3.3C-2C)。下一个阶段,高镍电芯在负极导入硅碳负极,电芯的质量能量密度有望可以达到300-400Wh/kg(体积能量密度630Wh/L-750Wh/L),快充时间为9-15分钟(4C)。

我们能看到目前国外的几家电池企业,主要的方向,一方面从中镍往高镍方向设计,另外就是减少钴的用量,做无钴电池。

表1 国内外主要的电池企业技术路线

第二部分 蜂巢的无钴路线

我怀着疑问去思考蜂巢这种无钴电池路线是什么,有没有可能成为中国在当前的两条技术路线之外一条可能性。

1)蜂巢的无钴电池是什么?

这种NMX的无钴材料,蜂巢采用了两种化学键能更大的元素,替代钴,掺杂到材料中,通过强化学键稳定氧八面体结构。然后采取单晶技术和纳米网络化包覆来达到稳定结构和减少正极材料与电解液的副反应长寿命的设计。

图2 NMx无钴是什么

2)蜂巢开发的这种无钴电池,有可能成为行业主要路线么?

从蜂巢看来,目前行业内使用的磷酸铁锂体系成本较低,但其能量密度只能达到~190wh/kg,限制了其大范围应用。而三元体系的能量密度更高可达250wh/kg以上,但三元材料中使用了钴元素,受制于蕴藏量与开采量,钴元素的国际市场价格极其不稳定,并长期保持在高位。

图3 2019年主要资源的生产国概览

而蜂巢能源的无钴材料实现了钴元素的零化,从而完全不受钴市场的影响,并实现低成本化,同时其能量密度可与三元材料持平。故从长远看,无钴电池相比磷酸铁锂技术方向和三元电池技术相比,具有巨大的竞争优势,是行业发展的不可替代趋势。

3)蜂巢一开始从垂直整合自己做正极以外,无钴这条技术路线,是否可能让第三方材料和电池厂家导入这条路线,是否可能如何和蜂巢合作?

从蜂巢的角度来看,蜂巢能源目前规划2025年产能200GWh,产品覆盖化学体系齐全,所需正极材料种类多,需求量巨大。而蜂巢在无钴的技术方向是尝试垂直整合的正极,聚焦于行业短板的、创新的、更高竞争力的正极材料研发和生产,如无钴、四元材料等。一方面,这么大的产能不是完全围绕无钴材料,也需要对于常规的铁锂、三元体系材料,所以蜂巢一方面对传统材料仍具有巨大需求大,将积极进行第三方的导入与合作。所以从无钴这个材料技术方向来看,蜂巢能源持积极开放的态度,多种合作方式都可以探讨展开,如专利授权、专利互换、专利池共享、合资入股、材料外售等等。目的还是把这条技术路线扩大。


图4 蜂巢的无钴电池规划

4)从终局来看,无钴材料路线是否能达到成本最优?这种技术路线的拐点,是否需要有大规模的行业协同,才能实现路线的扩展,和当前三元和铁锂相似的地位?

无钴材料的合成原料里去除了钴元素,首先从BOM角度降低了成本。其次,无钴材料合成工艺和常规三元的合成可实现共线生产,不需要专配生产线,这就为其大规模推广提供了便利。蜂巢能源的无钴材料,从材料层级、电芯层级、模组层级、pack层级、整车层级进行了层层验证,取得了优异的验证结果,完全满足了使用要求,搭载无钴电池的整车也将很快面世。无钴材料各项性能得到用户的认可后,其大规模推广即可很快实现。当然,大规模的行业协同肯定会更有利于产生规模效应。在公司示范效应产生后,逐渐会有同行业的友商和上下游加入这个技术路线,到时候的地位会更加突出。

5)从使用层面,无钴的技术路线到底是什么定位?适合哪些汽车技术产品?

无钴的技术路线,主要是为了平衡电动汽车用户对长续航、高安全、高快充、低成本的特性的均衡追求,基于三元体系上衍生出来的NMX的无钴路线,还是需要产品支撑。目前来看,无钴材料可实现高能量密度电芯的产品设计。由蜂巢能源H平台的无钴正极材料所打造的电池产品,从测试数据来看成绩斐然。常温下无钴电池的循环寿命将达到2500次以上。能量密度方面,无钴电池目前可以做到240~245Wh/kg,远高于主流磷酸铁锂电池的170~180Wh/kg水平,也十分接近811体系三元锂电的240~250Wh/kg水平。

图5 蜂巢的无钴技术覆盖很大的范围

至于大家普遍较为关注的安全性上,蜂巢能源的无钴电池除了在抗过充方面具有天然优势,其热稳定性也十分出色,所完成的150℃的热箱测试,远高于国标所要求的的130℃标准。这对比811体系的三元锂电而言,代表拥有更好的热稳定性能。蜂巢能源首款无钴产品115Ah已于2021年7月开始量产。搭载此款无钴产品的长城樱桃猫系列整车也将很快面世。综合无钴产品的性能,可适合搭载中高端长续航汽车产品。

如上所,述因磷酸铁锂体系的能量密度上限问题,搭载铁锂体系电芯的整车,普遍存在续航里程偏低问题,同时磷酸铁锂体系的低温性能较差,导致冬天整车续航里程大幅下降。而无钴电芯的能量密度大幅高于磷酸铁锂,低温特性也明显优于磷酸铁锂。所以同级别车辆,搭载无钴电芯,消费者会明显感知续航里程的增加,并且续航受天气温度的影响也较小。

6)无钴E系列直面铁锂的竞争


图6 低成本无钴电池

这里还要提及的是,面对磷酸铁锂的长期成本竞争优势,低镍无钴E平台所诞生的115Ah电芯,最终的目标是要比同容量磷酸铁锂电池能量密度提升20%,同时目标要降低17%的成本。也就是要实现无钴E电芯在中里程的车上已经具备替代铁锂产品的性能和成本竞争力。这个目标是非常具有挑战性的,一旦做成了,潜力也是最大的。

小结:通过对蜂巢的一些采访,我想各位读者可能对蜂巢推行的这条技术路线有一些更深刻的理解,我衷心祝愿这条路线能做起来。

汽车电子设计 本公众号是博主和汽车电子的行业的工程师们一起交流、探讨、思考的小结,以作为技术交流和沟通的桥梁
评论
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 43浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 37浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 33浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 31浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 45浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 80浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 37浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 92浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦