如何打造 iOS 短视频的极致丝滑体验,阿里工程师用了这些方案

原创 阿里云视频云 2021-08-27 17:24

内容作为 App 产品新的促活点,受到了越来越多的重视与投入,短视频则是增加用户粘性、增加用户停留时长的一把利器。短视频的内容与体验直接关系到用户是否愿意长时停留,盒马也提出全链路内容视频化的规划,以实现商品力表达的提升。目前已有短视频场景包括:首页、搜索、商品详情、达人秀、沉浸式视频、真香视频、盒区首页 feeds 流、话题、UGC 内容、话题合集落地页、社群、菜谱、盒拍一键剪、直播回放、weex 等。

作者|神捕

审校|泰一

本次优化的目标是将盒马 App 与主流短视频 App 体验对齐,如抖音、手淘等。优化具体的硬性指标有播放成功率、卡顿率、秒开率。另外,为了反应用户观看短视频过程中的真实体验,盒马还新增了体感指标:首帧渲染时长。

优化效果对比


以上视频测试基于 iPhone 6S,可以看到抖音在大多数情况下,在滑到下个视频后,可以立即开始播放;而盒马优化前,滑到下个视频后,会先展示封面图,再继续播放,有个闪跳的过程。优化后的盒马,效果已经与抖音效果接近。

为了衡量优化前后与抖音的体验对比,目前采用录屏数帧的方式,算出视频页面完全展示到首帧渲染时刻的耗时,体感数据如下:

此外还有一些硬性指标的优化,结果如下:

优化方案

在本次优化前期,调研了阿里集团内不少优秀的方案,大多数都是接入了手淘播放器,内核基于开源的 ijkPlayer。但播放器层面本身门槛较高,且手淘已优化较好了,所以本次的优化方向主要集中在上层业务的预加载方案上。具体从以下几个方面入手:

统一视频播放代理与缓存

视频的加载速度,很大程度上取决于从网络下载的耗时,增加视频缓存可以有效提高视频二次播放速度。为实现缓存机制,需要引入代理服务器,接手视频数据下载流程,如下:

A. 优化前播放流程:

B. 优化后播放流程:

业务层往播放器设置 videoUrl 前,先对原始 videoUrl 加密,替换成 127.0.0.1 的本地 proxyUrl, 将请求引导到代理 webServer,此时调用 proxy 模块进行视频原始视频 url 的解析、缓存的读取或远程请求,最终再通过 server 返回数据给播放器。

视频播放增加中间代理也是业界常见手段,盒马依赖的手淘播放器也有现成的代理服务,但其代理功能放在另一个独立的 DW 库中,对盒马是冗余的,且目前 SDK 暂未支持独立的预下载接口,上层无法做首播优化。所以目前盒马做了独立的代理层,以支持上层灵活的定制。

自建代理还有个好处是,一些业务并非使用统一手淘播放器的场景也能同时享受到缓存服务,比如一些 flutter 页面使用的系统播放器。至少缓存的管理,目前设置了缓存区最大值的保护,在每次 App 回到前台时,进行视频缓存的清理。

针对 m3u8 的代理与缓存

除了常见的 mp4 视频外,日常还会遇到 m3u8 的视频,比如盒马中的直播回放视频。(视频链接)

该类视频与 mp4 不同,在请求 url 时并非直接返回视频流,而是先返回 playlist 文本,playlist 中才是可播放的各个视频片断,如下:

这种视频的缓存处理,采用的是修改 m3u8 playlist 中的 url,替换为代理 url 实现,就可以走代理了。之前 iOS 侧对 m3u8 的缓存支持有问题会 crash,原因是修改了 m3u8 的 Playlist 的第 1 个视频的 url 为代理 proxyUrl 后,播放第一片段正常,但后续的片段 url 仍是原始 url,手淘播放器在加载这种原始相对 url 路径时,内部会拼接上第一小段的域名和 path,导致第二段以后的 url 有问题,直接 crash。目前的处理方式是,把 playlist 中所有 url 全部改成代理 url 的 fullpath 即可。

这样有了 mp4 和 m3u8 两种视频后,完整流程如下:

独立预加载能力

上述的代理缓存,能提升二次播放速度,但对首次播放的视频,仍然无缓存可用,下载过程依然很耗时。所以需要独立的预加载能力,配合业务层,在合适的时机提前进行视频数据的下载(无渲染)。

目前底层提供 [HMVideoLoader preLoadUrls:URLS] 方法,内部根据 url 进行视频缓存,下载大小限制 1M。多个视频同时预下载时,串行执行,保证不过多占用带宽,影响业务处理,等用户划动到视频位置时,可以直接开始播放,达到首开速度优化。

需要提下的是,此处的预加载,复用了上述代理类,也以 url 为 key 进行数据缓存,这样后续的二次播放也可以读取同一个的缓存。如果预加载过程中,滑到了该视频开始播放,则先停止预加载任务,避免同个视频的重复下载引起缓存冲突。

视频码率、分辨率优化

视频的预加载、代理缓存,都是基于提前准备视频数据角度考虑,这有个前提,就是准备时间很短,业务可以及时使用,如果视频很大,网络较差,业务又需要立即消费,则可能无法享受到优化效果,所以需要在视频码率、分辨率上进一步优化。

早期盒马都是播的 H264 视频,并且都是高清视频,这在很多 feeds 流上其实是用不上这么大的,影响加载速度且浪费流量。目前已在 cloudVideo 上申请配置了 H265 转码,盒马视频上传后可同时获取 265,264 两路视频,且有高清、标清、普清 3 种分辨率,这样就给端上按业务场景选择带来了自由度。先看下切换后同个视频大小的对比:

A. H264 切为 H265(都是高清):原始 H264 大小为 10.6M,切换后变为 7.1M

B. 切到 H265 并且修改分辨率:原始 H264 为 21M,切换后变为 8.3M

从这两个例子可以看到,同个视频都是高清前提下,切到 H265 视频后,大小下降了约 30%,如果同时又降低分辨率到标清,视频大小减小非常明显,这意味视频码率下降了,用户可以更快下载到首帧数据。

目前盒马服务端接口已改造支持直接返回 H265 视频地址,iOS 这边的策略是:优先使用 h265,并按当前环境,请求不同分辨率:

A. iOS11 以下,使用 h264;iOS11 及以上,使用 h265 (手淘播放器默认已开启硬解)

B. 分辨率,按当前机型(高、中、低)、网络类型(wifi/4g)、当前网络情况(强、弱)定义不同的分辨率请求顺序,如下,最终返回的数组按顺序拼成分辨率参数优先级,比如 hd#sd#ld 表示优先高清。

static NSString * const VIDEO_HD = @"hd";
static NSString * const VIDEO_SD = @"sd";
static NSString * const VIDEO_LD = @"ld";
static NSString * const VIDEO_HD_H265 = @"hd_265";
static NSString * const VIDEO_SD_H265 = @"sd_265";
static NSString * const VIDEO_LD_H265 = @"ld_265";

+ (NSArray*) getExpectedVideoDefinition {
    NSArray *VIDEO_PRIORITY_GOOD_ENV = nil;
    NSArray *VIDEO_PRIORITY_NORMAL_ENV = nil;
    NSArray *VIDEO_PRIORITY_BAD_ENV = nil;

    if ([[[UIDevice currentDevice] systemVersion] compare:@"11.0" options:NSNumericSearch] == NSOrderedAscending) {
        VIDEO_PRIORITY_GOOD_ENV = @[VIDEO_HD, VIDEO_SD, VIDEO_LD];
        VIDEO_PRIORITY_NORMAL_ENV = @[VIDEO_SD, VIDEO_LD, VIDEO_HD];
        VIDEO_PRIORITY_BAD_ENV = @[VIDEO_LD, VIDEO_SD, VIDEO_HD];
    }
    else{
        VIDEO_PRIORITY_GOOD_ENV = @[VIDEO_HD_H265, VIDEO_SD_H265, VIDEO_LD_H265];
        VIDEO_PRIORITY_NORMAL_ENV = @[VIDEO_SD_H265, VIDEO_LD_H265, VIDEO_HD_H265];
        VIDEO_PRIORITY_BAD_ENV = @[VIDEO_LD_H265, VIDEO_SD_H265, VIDEO_HD_H265];
    }

    AliHADeviceEvaluationLevel deviceLevel = [AliHADeviceEvaluation evaluationForDeviceLevel];
    NetworkQualityStatus networkQualityStatus = [[NWNetworkQualityMonitor shareInstance] currentNetworkQualityStatus];
    NetworkStatus nwStatus = [[NWReachabilityManager shareInstance] currentNetworkStatus];
        
    NSArray *videoPriority = VIDEO_PRIORITY_NORMAL_ENV;
    if (networkQualityStatus == SEMP_StrongSemaphore) {
        if (deviceLevel == HIGH_END_DEVICE) {
            videoPriority = VIDEO_PRIORITY_GOOD_ENV;
        } else {
            if (nwStatus == ReachableViaWiFi) {
                videoPriority = VIDEO_PRIORITY_NORMAL_ENV;
            } else {
                videoPriority = VIDEO_PRIORITY_BAD_ENV;
            }
        }
    } else {
        if (deviceLevel == HIGH_END_DEVICE || deviceLevel == MEDIUM_DEVICE) {
            videoPriority = VIDEO_PRIORITY_NORMAL_ENV;
        } else {
            videoPriority = VIDEO_PRIORITY_BAD_ENV;
        }
    }
    
    return videoPriority;
}

沉浸式视频翻页体感优化

上述方案上线完,回头看数据,平均加载速度提升了,但仍然有近 200ms 的加载时长,这其中包括了播放器初始化以及下载或加载缓存数据、渲染首帧的过程,究其原因,在大量用户复杂网络环境下,很难保证所有人都有最佳体验。200ms 在全屏的沉浸式视频场景中,虽然比之前快了很多,还是会让用户感受到瞬间的不流畅,即用户翻到下一页后,仍停留了一小段时间才播放了首帧。更糟糕的是,盒马上的视频,很多视频的封面图是达人自行上传的,很有可能与首帧不一样,这样从封面图跳到首帧的停顿感就更明显了。

为达到抖音那种丝滑的感觉,除了上述措施外,还需要在上层体感上再做一层预处理,这里采用了双播放器策略,如下:

基本流程是,播放当前视频的同时,预先实例化第二个播放器,加载视频 url 并播放到首帧后暂停,第 3、4 个视频进行串行预下载(预下载是纯下载的过程,无渲染逻辑)。在增加了下一个视频的 “预播” 机制后,用户滑到下个视频时,可以立即从首帧的暂停状态恢复为播放,不再需要预先显示封面图,也提高了播放体感上的速度。除视频以外的业务数据的渲染,可以放在用户滑动翻页的过程中进行。

首个视频的加载优化

上述优化了用户翻页的体验,但这种沉浸式页面的第一个视频的加载体验,仍需要单独拿出来优化,因为进入页面时,并没有给它留下预加载时机。如下:

如图所示,进入沉浸式页面时,总需要先请求页面 videoList 数据,然后再串行请求第一个视频的数据,就算加了封面图,也会让用户感受到慢。为此,现在修改策略为右图,在跳到沉浸式页面时需要前个页面提前传入 videoUrl,提前进行播放,同时进行 mtop 请求,渲染业务数据。这样保证了视频与业务数据的加载可以异步执行,由于用户主要目光是集中在视频上的,所以从用户的视角直观的来看,页面加载速度变快了。

音频体验优化

早期盒马这边没关注音频方面的优化,也收到了不少反馈,目前制定优化策略如下:

  1. App 启动不打断音乐。
  2. 进入音频独占页面(如真香视频、沉浸式视频)时,打断音乐。
  3. 退出 App 或退到后台时,恢复音乐。
  4. 音频播放不受静音键控制(类似抖音)。

后续优化方向

  1. 播放器层提供进一步封装:封装视频加载、预加载、双播放器、屏幕内首个视频判断、退出、暂停等所有边界逻辑,目前各个业务需要考虑较多这种边界情况,可以考虑在封装层收掉。
  2. 页面之间播放进度无缝切换:从小尺寸视频点击切换到沉浸式全屏过程,实现无缝切换,播放进度承接上个页面,音频也不打断。这样可以进一步优化沉浸式页面首个视频的体验,彻底实现 “0 耗时” 体感。
  3. 多视频同时播放的性能优化:盒马大多数场景下只会同时播放 1 个视频,但部分业务需要同时播放多个视频,此时对内存、滚动性能提出较高挑战。
  4. 视频转 Gif:针对部分场景下满屏都是视频又需要同时播放的情况,如果同时实例化 N 个播放器,效果可想而知。考虑尝试在视频内容生产阶段,同步生产 gif 图源,特定场景下 APP 可使用 gif 替换播放器实现预览。
  5. 视频剪辑 — 语音转字幕:之前已基于淘拍能力在盒马上建立起了视频剪辑功能,为内容生产者提供常见、简单易用的编辑能力。考虑新增语音转字幕模块,用于增强视频内盒马商品力表达。

下一期我们将继续分享盒马 iOS / Android 端短视频的体验优化实践。

「视频云技术」你最值得关注的音视频技术公众号,每周推送来自阿里云一线的实践技术文章,在这里与音视频领域一流工程师交流切磋。公众号后台回复【技术】可加入阿里云视频云产品技术交流群,和业内大咖一起探讨音视频技术,获取更多行业最新信息。
阿里云视频云 「视频云技术」你最值得关注的音视频技术公众号,每周推送来自阿里云一线的实践技术文章,在这里与音视频领
评论
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 66浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 63浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 40浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 167浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 113浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 103浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 98浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 83浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 77浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 170浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦