基于i.MX6ULL字符设备开发学习

嵌入式客栈 2021-08-27 11:30

之前的几篇文章(从i.MX6ULL嵌入式Linux开发1-uboot移植初探起),介绍了嵌入式了Linux的系统移植(uboot、内核与根文件系统)以及使用MfgTool工具将系统烧写到板子的EMMC中。

本篇开始介绍嵌入式Linux驱动开发。

内容较多,先看目录:

1 Linux驱动分类

Linux中的外设驱动可以分为三大类:字符设备驱动、块设备驱动和网络设备驱动。

  • 字符设备驱动:字符设备是能够按照字节流(比如文件)进行读写操作的设备。字符设备最常见,从最简单的点灯到I2C、SPI、音频等都属于字符设备驱动
  • 块设备驱动:以存储块为基础的设备驱动,如EMMC、NAND、SD卡等。对用户而言,字符设备与块设备的访问方式没有差别。
  • 网络设备驱动:即网络驱动,它同时具有字符设备和块设备的特点,因为它是输入输出是有结构块的(报文,包,帧),但它的块的大小又不是固定的。

2 Linux驱动基本原理

Linux中一切皆文件,驱动加载成功以后会在“/dev”目录下生成一个相应的文件,应用程序通过对这个名为“/dev/xxx”的文件进行相应的操作即可实现对硬件的操作。

比如最简单的点灯功能,会有/dev/led这样的驱动文件,应用程序使用open函数来打开文件/dev/led,如果要点亮或关闭led,那么就使用write函数写入开关值,如果要获取led的状态,就用read函数从驱动中读取相应的状态,使用完成以后使用close函数关闭/dev/led这个文件。

2.1 Linux软件分层结构

Linux软件从上到下可以分层4层结构,以控制LED为例:

  • 应用层:应用程序使用库提供的open函数打开LED设备

  • :库根据open函数传入的参数执行“swi”指令,进而引起CPU异常,进入内核

  • 内核:内核的异常处理函数根据传入的参数找到对应的驱动程序,返回文件句柄给库,进而返回给应用层

  • 应用层得到文件句柄后,使用库提供的write或ioctl发出控制指令

  • 库根据write或ioctl函数传入的参数执行“swi”指令,进入内核

  • 内核的异常处理函数根据传入的参数找到对应的驱动程序

  • 驱动:驱动程序控制硬件,点亮LED

应用程序运行在用户空间,而Linux驱动属于内核的一部分,因此驱动运行于内核空间。当应用层通过open函数打开/dev/led 这个驱动时,因用户空间不能直接操作内核,因此会使用“系统调用”的方法来从用户空间“陷入”到内核空间,实现对底层驱动的操作。

比如应用程序调用了open这个函数,则在驱动程序中也应有一个对应的open的函数。

2.2 Linux内核驱动操作函数

每一个系统调用,在驱动中都有与之对应的一个驱动函数,在Linux内核文件include/linux/fs.h中有个file_operations结构体,就是Linux内核驱动操作函数集合:

struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iterate) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*mremap)(struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *, fl_owner_t id);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, loff_t, loff_t, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
/*省略若干行...*/
};

其中有关字符设备驱动开发中常用的函数有:

  • owner:拥有该结构体的模块的指针,一般设置为THIS_MODULE。
  • llseek函数:用于修改文件当前的读写位置。
  • read函数:用于读取设备文件。
  • write函数:用于向设备文件写入(发送)数据。
  • poll函数:是个轮询函数,用于查询设备是否可以进行非阻塞的读写。
  • unlocked_ioctl函数:提供对于设备的控制功能, 与应用程序中的 ioctl 函数对应。
  • compat_ioctl函数:与 unlocked_ioctl功能一样,区别在于在 64 位系统上,32 位的应用程序调用将会使用此函数。在 32 位的系统上运行 32 位的应用程序调用的是unlocked_ioctl。
  • mmap函数:用于将将设备的内存映射到进程空间中(也就是用户空间),一般帧缓冲设备会使用此函数, 比如 LCD 驱动的显存,将帧缓冲(LCD 显存)映射到用户空间中以后应用程序就可以直接操作显存了,这样就不用在用户空间和内核空间之间来回复制。
  • open函数:用于打开设备文件。
  • release函数:用于释放(关闭)设备文件,与应用程序中的 close 函数对应。
  • fasync函数:用于刷新待处理的数据,用于将缓冲区中的数据刷新到磁盘中。
  • aio_fsync函数:与fasync功能类似,只是 aio_fsync 是异步刷新待处理的

2.3 Linux驱动运行方式

Linux 驱动有两种运行方式:

  • 将驱动编译进Linux内核中, 这样当Linux内核启动的时候就会自动运行驱动程序。
  • 将驱动编译成模块(扩展名为 .ko), 在Linux内核启动以后使用“insmod”命令加载驱动模块。

在驱动开发阶段一般都将其编译为模块,不需要编译整个Linux代码,方便调试驱动程序。当驱动开发完成后,根据实际需要,可以选择是否将驱动编译进Linux内核中。

2.4 Linux设备号

2.4.1 设备号的组成

Linux中每个设备都有一个设备号,设备号由主设备号和次设备号两部分组成。

  • 主设备号:表示某一个具体的驱动
  • 次设备号:表示使用这个驱动的各个设备

Linux 提供了名为dev_t的数据类型表示设备号,其本质是32位的unsigned int数据类型,其中高12位为主设备号,低2 位为次设备号,因此Linux中主设备号范围为0~4095

在文件include/linux/kdev_t.h中提供了几个关于设备号操作的宏定义:

#define MINORBITS     20 
#define MINORMASK ((1U << MINORBITS) - 1)

#define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS))
#define MINOR(dev) ((unsigned int) ((dev) & MINORMASK))
#define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi))
  • MINORBITS:表示次设备号位数,一共20位
  • MINORMASK:表示次设备号掩码
  • MAJOR:用于从dev_t中获取主设备号,将dev_t右移20位即可
  • MINOR:用于从dev_t中获取次设备号,取dev_t的低20位的值即可
  • MKDEV:用于将给定的主设备号和次设备号的值组合成dev_t类型的设备号

2.4.2 主设备号的分配

主设备号的分配包括静态分配和动态分配

  • 静态分配需要手动指定设备号,并且要注意不能与已有的重复,一些常用的设备号已经被Linux内核开发者给分配掉了,使用“cat /proc/devices”命令可查看当前系统中所有已经使用了的设备号。
  • 动态分配是在注册字符设备之前先申请一个设备号,系统会自动分配一个没有被使用的设备号, 这样就避免了冲突。在卸载驱动的时候释放掉这个设备号即可。

设备号的申请函数:

/*
* dev:保存申请到的设备号
* baseminor:次设备号起始地址,一般baseminor为0 (次设备号以baseminor为起始地址地址开始递)
* count:要申请的设备号数量
* name:设备名字
*/

int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name)

设备号的释放函数:

/*
* from:要释放的设备号
* count:表示从from开始,要释放的设备号数量
*/

void unregister_chrdev_region(dev_t from, unsigned count)

3 字符设备驱动开发模板

3.1 加载与卸载

在编写驱动的时候需要注册模块加载和卸载这两种函数:

module_init(xxx_init);   //注册模块加载函数 
module_exit(xxx_exit); //注册模块卸载函数
  • module_init()用来向Linux内核注册一个模块加载函数,参数xxx_init就是需要注册的具体函数,当使用 “insmod” 命令加载驱动的时候,xxx_init这个函数就会被调用。

  • module_exit()用来向Linux内核注册一个模块卸载函数,参数xxx_exit就是需要注册的具体函数,当使 用“rmmod”命令卸载具体驱动的时候 xxx_exit函数就会被调用。

字符设备驱动模块加载和卸载模板如下所示:

/* 驱动入口函数 */ 
static int __init xxx_init(void)
{
/*入口函数内容 */
return 0;
}

/* 驱动出口函数 */
static void __exit xxx_exit(void)
{
/*出口函数内容*/
}

/*指定为驱动的入口和出口函数 */
module_init(xxx_init);
module_exit(xxx_exit);

驱动编译完成以后扩展名为.ko, 有两种命令可以加载驱动模块:

  • insmod:最简单的模块加载命令,用于加载指定的.ko模块,此命令不能解决模块的依赖关系

  • modprobe:该命令会分析模块的依赖关系,将所有的依赖模块都加载到内核中,因此更智能

    modprobe 命令默认会去/lib/modules/<kernel-version>目录中查找模块(自制的根文件系统没有这个目录,需要手动创建)

卸载驱动也有两种命令:

  • rmmod:例如使用rmmod drv.ko来卸载 drv.ko这一个模块
  • modprobe -r:该命令除了卸载指定的驱动,还卸载其所依赖的其他模块,若这些依赖模块还在被其它模块使用,就不能使用 modprobe来卸载驱动模块!!!

3.2 注册与注销

对于字符设备驱动而言,当驱动模块加载成功以后需要注册字符设备,同样,卸载驱动模块的时候也需要注销掉字符设备

字符设备的注册函数原型如下所示:

/* func: register_chrdev 注册字符设备
* major:主设备号
* name:设备名字,指向一串字符串
* fops:结构体 file_operations 类型指针,指向设备的操作函数集合变量
*/

static inline int register_chrdev(unsigned int major, const char *name, const struct file_operations *fops)

字符设备的注销函数原型如下所示:

/* func: unregister_chrdev 注销字符设备
* majo:要注销的设备对应的主设备号
* name:要注销的设备对应的设备名
*/

static inline void unregister_chrdev(unsigned int major, const char *name)

一般字符设备的注册在驱动模块的入口函数 xxx_init 中进行,字符设备的注销在驱动模块的出口函数 xxx_exit 中进行。

static struct file_operations test_fops;

/* 驱动入口函数 */
static int __init xxx_init(void)
{
/* 入口函数具体内容 */
int retvalue = 0;
/* 注册字符设备驱动 */
retvalue = register_chrdev(200, "chrtest", &test_fops);
if(retvalue < 0)
{
/* 字符设备注册失败, 自行处理 */
}
return 0;
}

/* 驱动出口函数 */
static void __exit xxx_exit(void)
{
/* 注销字符设备驱动 */
unregister_chrdev(200, "chrtest");
}

/* 将上面两个函数指定为驱动的入口和出口函数 */
module_init(xxx_init);
module_exit(xxx_exit);

注:选择没有被使用的主设备号,可输入命令“cat /proc/devices”来查看当前已经被使用掉的设备号

3.3 实现设备的具体操作函数

file_operations 结构体就是设备的具体操作函数。

假设对chrtest这个设备有如下两个要求:

  • 能够实现打开和关闭操作:需要实现 file_operations 中的openrelease 这两个函数
  • 能够实现进行读写操作:需要实现 file_operations 中的readwrite这两个函数

首先是 打开(open)、读取(read)、写入(write)、释放(release) 4个基本操作

/*打开设备*/ 
static int chrtest_open(struct inode *inode, struct file *filp)
{
/*用户实现具体功能*/
return 0;
}

/*从设备读取*/
static ssize_t chrtest_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
/*用户实现具体功能*/
return 0;
}

/*向设备写数据*/
static ssize_t chrtest_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
/*用户实现具体功能*/
return 0;
}

/*关闭释放设备*/
static int chrtest_release(struct inode *inode, struct file *filp)
{
/*用户实现具体功能*/
return 0;
}

然后是 驱动的入口(init)和出口(exit) 函数:

/*文件操作结构体*/
static struct file_operations test_fops = {
.owner = THIS_MODULE,
.open = chrtest_open,
.read = chrtest_read,
.write = chrtest_write,
.release = chrtest_release,
};

/*驱动入口函数*/
static int __init xxx_init(void)
{
/*入口函数具体内容*/
int retvalue = 0;

/*注册字符设备驱动*/
retvalue = register_chrdev(200, "chrtest", &test_fops);
if(retvalue < 0)
{
/*字符设备注册失败*/
}
return 0;
}

/*驱动出口函数*/
static void __exit xxx_exit(void)
{
/*注销字符设备驱动*/
unregister_chrdev(200, "chrtest");
}

/*指定为驱动的入口和出口函数*/
module_init(xxx_init);
module_exit(xxx_exit);

3.4 添加LICENSE和作者信息

LICENSE是必须添加的,否则编译时会报错,作者信息可加可不加。

MODULE_LICENSE()  //添加模块 LICENSE 信息 
MODULE_AUTHOR() //添加模块作者信息

总结一下:

4 字符设备驱动开发实验

下面以正点原子提供的教程中的chrdevbase这个虚拟设备为例,完整的编写一个字符设备驱动模块。chrdevbase不是实际存在的一个设备,只是为了学习字符设备的开发的流程。

4.1 程序编写

需要分别编写驱动程序应用程序

为了区分两个程序的打印信息,在驱动程序的打印前都添加“[BSP]”标识,在应用程序的打印前都添加“[APP]”标识

4.1.1 编写驱动程序

  • 一些定义
#define CHRDEVBASE_MAJOR	200				/*主设备号*/
#define CHRDEVBASE_NAME "chrdevbase" /*设备名*/

static char readbuf[100]; /*读缓冲区*/
static char writebuf[100]; /*写缓冲区*/
static char kerneldata[] = {"kernel data!"}; /*内核驱动中的数据,用来测试应用程序读取该数据*/
  • 打开、关闭、读取、写入
/*
* @description : 打开设备
* @param - inode : 传递给驱动的inode
* @param - filp : 设备文件,file结构体有个叫做private_data的成员变量
* 一般在open的时候将private_data指向设备结构体。
* @return : 0 成功;其他 失败
*/

static int chrdevbase_open(struct inode *inode, struct file *filp)
{
printk("[BSP] chrdevbase open!\n");
return 0;
}

/*
* @description : 从设备读取数据
* @param - filp : 要打开的设备文件(文件描述符)
* @param - buf : 返回给用户空间的数据缓冲区
* @param - cnt : 要读取的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 读取的字节数,如果为负值,表示读取失败
*/

static ssize_t chrdevbase_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
int retvalue = 0;

/* 向用户空间发送数据 */
memcpy(readbuf, kerneldata, sizeof(kerneldata));

retvalue = copy_to_user(buf, readbuf, cnt);
if(retvalue == 0)
{
printk("[BSP] kernel senddata ok!\n");
}
else
{
printk("[BSP] kernel senddata failed!\n");
}

printk("[BSP] chrdevbase read!\n");
return 0;
}

/*
* @description : 向设备写数据
* @param - filp : 设备文件,表示打开的文件描述符
* @param - buf : 要写给设备写入的数据
* @param - cnt : 要写入的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 写入的字节数,如果为负值,表示写入失败
*/

static ssize_t chrdevbase_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
int retvalue = 0;

/* 接收用户空间传递给内核的数据并且打印出来 */
retvalue = copy_from_user(writebuf, buf, cnt);
if(retvalue == 0)
{
printk("[BSP] kernel recevdata:%s\n", writebuf);
}
else
{
printk("[BSP] kernel recevdata failed!\n");
}

printk("[BSP] chrdevbase write!\n");
return 0;
}

/*
* @description : 关闭/释放设备
* @param - filp : 要关闭的设备文件(文件描述符)
* @return : 0 成功;其他 失败
*/

static int chrdevbase_release(struct inode *inode, struct file *filp)
{
printk("[BSP] chrdevbase release!\n");
return 0;
}

  • 驱动加载与注销
/*
* 设备操作函数结构体
*/

static struct file_operations chrdevbase_fops = {
.owner = THIS_MODULE,
.open = chrdevbase_open,
.read = chrdevbase_read,
.write = chrdevbase_write,
.release = chrdevbase_release,
};

/*
* @description : 驱动入口函数
* @param : 无
* @return : 0 成功;其他 失败
*/

static int __init chrdevbase_init(void)
{
int retvalue = 0;

/* 注册字符设备驱动 */
retvalue = register_chrdev(CHRDEVBASE_MAJOR, CHRDEVBASE_NAME, &chrdevbase_fops);
if(retvalue < 0)
{
printk("[BSP] chrdevbase driver register failed\n");
}
printk("[BSP] chrdevbase init!\n");
return 0;
}

/*
* @description : 驱动出口函数
* @param : 无
* @return : 无
*/

static void __exit chrdevbase_exit(void)
{
/* 注销字符设备驱动 */
unregister_chrdev(CHRDEVBASE_MAJOR, CHRDEVBASE_NAME);
printk("[BSP] chrdevbase exit!\n");
}

/*将上面两个函数指定为驱动的入口和出口函数*/
module_init(chrdevbase_init);
module_exit(chrdevbase_exit);
  • 最后的LIENSE与作者
/*LICENSE和作者信息*/
MODULE_LICENSE("GPL");
MODULE_AUTHOR("zuozhongkai & xxpcb"); //本篇的程序代码在“正点原子”左大神提供的代码上进行修改

4.1.2 编写应用程序

这里把程序截取为3段分析,首先看开头

#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"

static char usrdata[] = {"usr data!"}; /*应用程序中的数据,用于测试通过驱动访问写入内核*/

int main(int argc, char *argv[])
{
int fd, retvalue;
char *filename;
char readbuf[100], writebuf[100];

if(argc != 3)
{
printf("[APP] Error Usage!\n");
return -1;
}

//参数1是驱动的文件名,用来指定驱动的位置
filename = argv[1];

//【1】打开驱动文件
fd = open(filename, O_RDWR);
if(fd < 0)
{
printf("[APP] Can't open file %s\n", filename);
return -1;
}
printf("[APP] open file: '%s' success\n", filename);

主要是一些头文件和main函数入口,调用main函数时需要传入2个参数(实际是3个参数,函数名本身是默认的第0个参数,不需要手动指定),具体作用为:

  • 参数0:argv[0],函数名本身,这里不作用途
  • 参数1:argv[1],filename,这里不作用途
  • 参数2:argv[2],自定义的操作参数,下面函数会讲到,1为从驱动文件中读取,2为向驱动文件中写入数据

再来看具体操作:

    //【2】从驱动文件读取数据
if(atoi(argv[2]) == 1)//参数1表示【读取】内核中的数据
{
retvalue = read(fd, readbuf, 50);
if(retvalue < 0)
{
printf("[APP] read file '%s' failed!\n", filename);
}
else
{
/* 读取成功,打印出读取成功的数据 */
printf("[APP] read data:%s\n",readbuf);
}
}
//【3】向设备驱动写数据
if(atoi(argv[2]) == 2)//参数2表示向内核中【写入】数据
{
memcpy(writebuf, usrdata, sizeof(usrdata));
retvalue = write(fd, writebuf, 50);
if(retvalue < 0)
{
printf("[APP] write file %s failed!\n", filename);
}
else
{
printf("[APP] write data:'%s' to file ok\n", writebuf);
}
}

最后是关闭设备

	//【4】关闭设备
retvalue = close(fd);
if(retvalue < 0)
{
printf("[APP] Can't close file %s\n", filename);
return -1;
}
printf("[APP] close file ok\r\n");

return 0;
}

关闭即表示不再使用该设备了(若要再使用则重新打开即可),通过关闭驱动文件来实现字符设备驱动的关闭。

4.2 程序编译

4.2.1 编译驱动程序

编译驱动,即编译chrdevbase.c这个文件为.ko 模块,使用Makefile来编译,先创建Makefile:

KERNELDIR := /home/xxpcb/myTest/imx6ull/kernel/nxp_kernel/linux-imx-rel_imx_4.1.15_2.1.0_ga
CURRENT_PATH := $(shell pwd)
obj-m := chrdevbase.o

build: kernel_modules

kernel_modules:
$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) modules
clean:
$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean

各行含义:

  • KERNELDIR:开发板所使用的Linux内核源码目录
  • CURRENT_PATH:当前路径,通过运行“pwd”命令获取
  • obj-m:将 chrdevbase.c 这个文件编译为chrdevbase.ko模块
  • 具体的编译命令:后面的modules表示编译模块,-C 表示切换工作目录到KERNERLDIR目录,M表示模块源码目录

输入“make”命令即可编译,编译后会出现许多编译文件

注:若直接make编译报如下错误,是因为kernel中没有指定编译器和架构,使用了默认的x86平台编译报错。

修改Kernel工程的顶层Makefile,直接定义ARCH和CROSS_COMPILE 这两个的变量值为 arm 和 arm-linux-gnueabihf-

(内核篇的介绍见:i.MX6ULL嵌入式Linux开发3-Kernel移植)

4.2.2 编译应用程序

编译应用程序不需要内核文件参与,只有一个文件就能编译,因此直接输入指令进行编译:

arm-linux-gnueabihf-gcc chrdevbaseApp.c -o chrdevbaseApp

编译会生chrdevbaseApp,它是32位LSB格式的ARM版本可执行文件

4.3 测试

上一篇文章(i.MX6ULL嵌入式Linux开发6-系统烧写到eMMC与遇到的坑!)已经实现了系统移植的打包烧录工作,系统已经烧录的EMMC中了。这次我们就直接在这个基础上进行实验。

4.3.1 创建驱动模块目录

加载驱动模块,使用的modprobe命令,会从特定的目录下寻找文件。比如开发板使用的是4.1.15版的Linux内核 ,则是“/lib/modules/4.1.15”这个目录,这个目录一般是没有的,需要根据Linux内核的版本自己创建。

注意这是开发板的文件系统中的路径,可以通过串口连接进入开发板,通过linux指令创建该目录。

4.3.2 发送文件到开发板(TFTP传输)

此次测试首先需要将ubuntu中编译的文件传输到板子中运行,怎么传输呢?可以使用TFTP传输服务。

之前的文章(i.MX6ULL嵌入式Linux开发2-uboot移植实践)中已经介绍了如何在ubuntu中搭建TFTP服务器

搭建好TFTP服务后,开始传输文件到开发板具体的传输步骤为:

  • 开发板连接网线,与ubuntu虚拟机处于同一局域网内

  • 确保ubuntu已安装的TFTP服务,并设置了TFTP服务文件夹

  • 将ubuntu中编译好的文件复制到ubuntu的TFTP服务文件夹中!!!

    mv chrdevbaseApp ~/myTest/tftpboot/
    mv chrdevbase.ko ~/myTest/tftpboot/

    注:编译完程序,在传输到板子之前,一定要记得把文件先复制到TFTP文件夹中,否则板子获取到的可能是TFTP文件夹中的旧文件。

  • 开发板的串口中通过如下指令来将ubuntu中的文件传输到开发板中

    cd /lib/modules/4.1.15   /*确保在要下载文件的目录中,若已在,则忽略*/
    tftp -g -r chrdevbaseApp 192.168.5.101 /*获取chrdevbaseApp文件*/
    tftp -g -r chrdevbase.ko 192.168.5.101 /*获取chrdevbase.ko文件*/

    这里的-g代表get,即下载文件,-r代表remote file,即远程主机的文件名,然后是要下载的文件名,最后的远程主机ubuntu的IP地址

    输入该指令后,可以看到文件传输进度,如下图:

4.3.3 开始测试

驱动文件chrdevbase.ko和应用文件chrdevbaseApp传输到板子中的/lib/modules/4.1.15目录后,就可以测试了。

首先使用insmod命令来加载驱动,然后使用lsmod查看当前的驱动(只有一个我们刚加载的字符驱动),再使用使用cat指令查看devices 信息,确认系统中是否已经列举了该设备,3条指令如下:

insmod chrdevbase.ko 
lsmod
cat /proc/devices

具体是输出信息:

可以看出,系统中存在chrdevbase设备,主设备号为程序中设定的200。

驱动加载后,还要在/dev目录下创建一个对应的设备节点文件(应用程序就是通过该节点文件实现对设备的操作)。

输入如下2条命令创建/dev/chrdevbase这个设备节点文件,并查看结果:

mknod /dev/chrdevbase c 200 0 
ls /dev/chrdevbase -l

至此,字符设备驱动已经加载完成,可以测试我们的应用程序了,也就是

按照上面程序的设定,1是读,2是写:

./chrdevbaseApp /dev/chrdevbase 1  
./chrdevbaseApp /dev/chrdevbase 2
  • 先来看“读测试”,注意要给chrdevbaseApp可执行的权限,否则无法运行。

图中下部是程序输出信息,但似乎只有BSP驱动程序的的输出,没有APP应用程序的输出,应该是内核打印printk与应用的打印printf冲突了,导致APP的打印被挤掉了。

  • 再来看“写测试'',同样也是只有BSP的打印

4.3.4 打印冲突问题规避

对于打印冲突问题,我们可以先在每个printf前后加个sleep(1)的1秒延时,这样可以先避免打印冲突。

增加延时后再次测试,打印正常:

测试完,最后是rmmod命令卸载模块:

5 总结

本篇介绍了嵌入式Linux驱动开发中的基础驱动——字符驱动开发的基本模式,使用了一个虚拟的字符设备驱动进行测试,了解驱动程序与应用程序之间的调用关系。

—— The End —


推荐阅读  点击蓝色字体即可跳转
☞ QT容器很香之QList<T>实战举例
☞ 步进电机调速,S曲线调速算法你会吗?
 图文详解Modbus-RTU协议
 RS-485总线,这篇很详细

欢迎转发、留言、点赞、分享,感谢您的支持!

嵌入式客栈 欢迎关注嵌入式客栈,主要分享嵌入式Linux系统构建、嵌入式linux驱动开发、单片机技术、FPGA开发、信号处理、工业通讯等技术主题。欢迎关注,一起交流,一起进步!
评论
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 74浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 78浏览
  • 肖特基具有很多的应用场景, 可以做同步整流,防止电流倒灌和电源反接等,但是随着电源电流的增大,肖特基导通正向压降0.3~0.7v的劣势也越发明显,产生了很多的热,对于工程师的散热设计是个考验,增加了工程师的设计难度和产品成本,目前一种新的理想二极管及其控制器,目前正在得到越来越广泛的应用- BMS,无人机,PLC,安防,家电,电动工具,汽车等都在快速普及理想二极管有三种架构,内置电荷泵的类似无锡明芯微MX5050T这种,驱动能力会弱点,静态功耗200uA,外置电荷泵MX74700T的这种驱动能力
    王萌 2024-12-10 08:51 85浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 47浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 47浏览
  • 本文介绍Linux系统(Ubuntu/Debian通用)挂载exfat格式U盘的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。修改对应的内核配置文件# 进入sdk目录cdrk3562_linux# 编辑内核配置文件vi./kernel-5.10/arch/arm64/configs/rockchip_linux_defconfig注:不清楚内核使用哪个defc
    Industio_触觉智能 2024-12-10 09:44 90浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 70浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 66浏览
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 64浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 76浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 101浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦