STM32单片机Bootloader设计(上)

原创 乐创客 2021-07-02 07:05
文 / Edward


   STM32的启动文件

STM32作为一款单片机,它的启动方式很简单,即当Boot配置了从内部Flash启动模式之后,一上电程序就会从0x8000000地址处开始执行文件,因此我们在使用Keil设置程序起始地址的时候,需要将这个Flash地址设置成0x8000000,只有将这个地址设置成0x8000000,生成的hex文件才可以被正常烧录到此地址,单片机上电之后才可以正常启动。而如果使用J-Flash工具烧写Hex文件时,这个地址会自动根据Hex文件解析出来。然而如果当你烧写二进制Bin文件时,还需要手动将单片机的起始地址制定出来,关于Hex文件和Bin文件的异同点,这个又是可以长篇大论一番了,我们下次特别写文章来讲。


图1 Keil设置起始地址和空间


STM32启动文件

;********************* (C) COPYRIGHT 2017 STMicroelectronics ********************;* File Name          : startup_stm32l151xb.s;* Author             : MCD Application Team;* Description        : STM32L151XB Devices vector for MDK-ARM toolchain.;*                      This module performs:;*                      - Set the initial SP;*                      - Set the initial PC == Reset_Handler;*                      - Set the vector table entries with the exceptions ISR ;*                        address.;*                      - Configure the system clock;*                      - Branches to __main in the C library (which eventually;*                        calls main()).;*                      After Reset the Cortex-M3 processor is in Thread mode,;*                      priority is Privileged, and the Stack is set to Main.;********************************************************************************;*;* Copyright (c) 2017 STMicroelectronics. All rights reserved.;*;* This software component is licensed by ST under BSD 3-Clause license,;* the "License"; You may not use this file except in compliance with the;* License. You may obtain a copy of the License at:;*                        opensource.org/licenses/BSD-3-Clause;*;*******************************************************************************;* <<< Use Configuration Wizard in Context Menu >>>;; Amount of memory (in bytes) allocated for Stack; Tailor this value to your application needs; <h> Stack Configuration;   <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3Stack_Mem SPACE Stack_Size__initial_sp

; <h> Heap Configuration; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>; </h>
Heap_Size EQU 0x00000200
AREA HEAP, NOINIT, READWRITE, ALIGN=3__heap_baseHeap_Mem SPACE Heap_Size__heap_limit
PRESERVE8 THUMB

; Vector Table Mapped to Address 0 at Reset AREA RESET, DATA, READONLY EXPORT __Vectors EXPORT __Vectors_End EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack DCD Reset_Handler ; Reset Handler DCD NMI_Handler ; NMI Handler DCD HardFault_Handler ; Hard Fault Handler DCD MemManage_Handler ; MPU Fault Handler DCD BusFault_Handler ; Bus Fault Handler DCD UsageFault_Handler ; Usage Fault Handler DCD 0 ; Reserved DCD 0 ; Reserved DCD 0 ; Reserved DCD 0 ; Reserved DCD SVC_Handler ; SVCall Handler DCD DebugMon_Handler ; Debug Monitor Handler DCD 0 ; Reserved DCD PendSV_Handler ; PendSV Handler DCD SysTick_Handler ; SysTick Handler
; External Interrupts DCD WWDG_IRQHandler ; Window Watchdog DCD PVD_IRQHandler ; PVD through EXTI Line detect DCD TAMPER_STAMP_IRQHandler ; Tamper and Time Stamp DCD RTC_WKUP_IRQHandler ; RTC Wakeup DCD FLASH_IRQHandler ; FLASH DCD RCC_IRQHandler ; RCC DCD EXTI0_IRQHandler ; EXTI Line 0 DCD EXTI1_IRQHandler ; EXTI Line 1 DCD EXTI2_IRQHandler ; EXTI Line 2 DCD EXTI3_IRQHandler ; EXTI Line 3 DCD EXTI4_IRQHandler ; EXTI Line 4 DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1 DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2 DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3 DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4 DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5 DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6 DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7 DCD ADC1_IRQHandler ; ADC1 DCD USB_HP_IRQHandler ; USB High Priority DCD USB_LP_IRQHandler ; USB Low Priority DCD DAC_IRQHandler ; DAC DCD COMP_IRQHandler ; COMP through EXTI Line DCD EXTI9_5_IRQHandler ; EXTI Line 9..5 DCD 0 ; Reserved DCD TIM9_IRQHandler ; TIM9 DCD TIM10_IRQHandler ; TIM10 DCD TIM11_IRQHandler ; TIM11 DCD TIM2_IRQHandler ; TIM2 DCD TIM3_IRQHandler ; TIM3 DCD TIM4_IRQHandler ; TIM4 DCD I2C1_EV_IRQHandler ; I2C1 Event DCD I2C1_ER_IRQHandler ; I2C1 Error DCD I2C2_EV_IRQHandler ; I2C2 Event DCD I2C2_ER_IRQHandler ; I2C2 Error DCD SPI1_IRQHandler ; SPI1 DCD SPI2_IRQHandler ; SPI2 DCD USART1_IRQHandler ; USART1 DCD USART2_IRQHandler ; USART2 DCD USART3_IRQHandler ; USART3 DCD EXTI15_10_IRQHandler ; EXTI Line 15..10 DCD RTC_Alarm_IRQHandler ; RTC Alarm through EXTI Line DCD USB_FS_WKUP_IRQHandler ; USB FS Wakeup from suspend DCD TIM6_IRQHandler ; TIM6 DCD TIM7_IRQHandler ; TIM7 __Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset handler routineReset_Handler PROC EXPORT Reset_Handler [WEAK] IMPORT __main IMPORT SystemInit LDR R0, =SystemInit BLX R0 LDR R0, =__main BX R0 ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC EXPORT NMI_Handler [WEAK] B . ENDPHardFault_Handler\ PROC EXPORT HardFault_Handler [WEAK] B . ENDPMemManage_Handler\ PROC EXPORT MemManage_Handler [WEAK] B . ENDPBusFault_Handler\ PROC EXPORT BusFault_Handler [WEAK] B . ENDPUsageFault_Handler\ PROC EXPORT UsageFault_Handler [WEAK] B . ENDPSVC_Handler PROC EXPORT SVC_Handler [WEAK] B . ENDPDebugMon_Handler\ PROC EXPORT DebugMon_Handler [WEAK] B . ENDPPendSV_Handler PROC EXPORT PendSV_Handler [WEAK] B . ENDPSysTick_Handler PROC EXPORT SysTick_Handler [WEAK] B . ENDP
Default_Handler PROC
EXPORT WWDG_IRQHandler [WEAK] EXPORT PVD_IRQHandler [WEAK] EXPORT TAMPER_STAMP_IRQHandler [WEAK] EXPORT RTC_WKUP_IRQHandler [WEAK] EXPORT FLASH_IRQHandler [WEAK] EXPORT RCC_IRQHandler [WEAK] EXPORT EXTI0_IRQHandler [WEAK] EXPORT EXTI1_IRQHandler [WEAK] EXPORT EXTI2_IRQHandler [WEAK] EXPORT EXTI3_IRQHandler [WEAK] EXPORT EXTI4_IRQHandler [WEAK] EXPORT DMA1_Channel1_IRQHandler [WEAK] EXPORT DMA1_Channel2_IRQHandler [WEAK] EXPORT DMA1_Channel3_IRQHandler [WEAK] EXPORT DMA1_Channel4_IRQHandler [WEAK] EXPORT DMA1_Channel5_IRQHandler [WEAK] EXPORT DMA1_Channel6_IRQHandler [WEAK] EXPORT DMA1_Channel7_IRQHandler [WEAK] EXPORT ADC1_IRQHandler [WEAK] EXPORT USB_HP_IRQHandler [WEAK] EXPORT USB_LP_IRQHandler [WEAK] EXPORT DAC_IRQHandler [WEAK] EXPORT COMP_IRQHandler [WEAK] EXPORT EXTI9_5_IRQHandler [WEAK] EXPORT TIM9_IRQHandler [WEAK] EXPORT TIM10_IRQHandler [WEAK] EXPORT TIM11_IRQHandler [WEAK] EXPORT TIM2_IRQHandler [WEAK] EXPORT TIM3_IRQHandler [WEAK] EXPORT TIM4_IRQHandler [WEAK] EXPORT I2C1_EV_IRQHandler [WEAK] EXPORT I2C1_ER_IRQHandler [WEAK] EXPORT I2C2_EV_IRQHandler [WEAK] EXPORT I2C2_ER_IRQHandler [WEAK] EXPORT SPI1_IRQHandler [WEAK] EXPORT SPI2_IRQHandler [WEAK] EXPORT USART1_IRQHandler [WEAK] EXPORT USART2_IRQHandler [WEAK] EXPORT USART3_IRQHandler [WEAK] EXPORT EXTI15_10_IRQHandler [WEAK] EXPORT RTC_Alarm_IRQHandler [WEAK] EXPORT USB_FS_WKUP_IRQHandler [WEAK] EXPORT TIM6_IRQHandler [WEAK] EXPORT TIM7_IRQHandler [WEAK]
WWDG_IRQHandlerPVD_IRQHandlerTAMPER_STAMP_IRQHandlerRTC_WKUP_IRQHandlerFLASH_IRQHandlerRCC_IRQHandlerEXTI0_IRQHandlerEXTI1_IRQHandlerEXTI2_IRQHandlerEXTI3_IRQHandlerEXTI4_IRQHandlerDMA1_Channel1_IRQHandlerDMA1_Channel2_IRQHandlerDMA1_Channel3_IRQHandlerDMA1_Channel4_IRQHandlerDMA1_Channel5_IRQHandlerDMA1_Channel6_IRQHandlerDMA1_Channel7_IRQHandlerADC1_IRQHandlerUSB_HP_IRQHandlerUSB_LP_IRQHandlerDAC_IRQHandlerCOMP_IRQHandlerEXTI9_5_IRQHandlerTIM9_IRQHandlerTIM10_IRQHandlerTIM11_IRQHandlerTIM2_IRQHandlerTIM3_IRQHandlerTIM4_IRQHandlerI2C1_EV_IRQHandlerI2C1_ER_IRQHandlerI2C2_EV_IRQHandlerI2C2_ER_IRQHandlerSPI1_IRQHandlerSPI2_IRQHandlerUSART1_IRQHandlerUSART2_IRQHandlerUSART3_IRQHandlerEXTI15_10_IRQHandlerRTC_Alarm_IRQHandlerUSB_FS_WKUP_IRQHandlerTIM6_IRQHandlerTIM7_IRQHandler
B .
ENDP
ALIGN
;*******************************************************************************; User Stack and Heap initialization;******************************************************************************* IF :DEF:__MICROLIB EXPORT __initial_sp EXPORT __heap_base EXPORT __heap_limit ELSE IMPORT __use_two_region_memory EXPORT __user_initial_stackheap __user_initial_stackheap
LDR R0, = Heap_Mem LDR R1, =(Stack_Mem + Stack_Size) LDR R2, = (Heap_Mem + Heap_Size) LDR R3, = Stack_Mem BX LR
ALIGN
ENDIF
END
;************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE*****


首先让我们来看下STM32启动文件,当MCU上电复位之后,整个程序会跳转到以0x8000000为基址,偏移0的地址处,即还是0x8000000。但是STM32的0x8000000地址处存放的并不是整个芯片的第一句指令,而是整个芯片的堆栈初始化程序,如图2所示。


图2 0x8000000偏移0地址处的堆栈初始化程序指针


由于STM32的地址空间都是4字节对齐的,因此这个栈顶指针的存放空间为4字节,所以STM32复位之后跳转的地址应该是0x8000000基址偏移4个字节,即0x8000004。如同3所示。


图3 STM32复位跳转地址


图3中的程序非常浅显易懂,第136和137行,即将程序跳转到SystemInit处,这是个C语言函数,定义在“system_stm32l1xx.c”文件里,它的目的就是对中断向量表起始地址进行指定,也就是图2中的“__Vector”处。当然CM3内核和CM0内核关于SCB(系统控制块)的定义有些许差别,CM0不在本文讨论中,但是CM3和CM4的中断向量表映射机制还是很相似的。


图4 SystemInit函数映射中断向量表


图4中我们可以看到,SCB中关于Vector的地址是通过符号FLASH_BASE和VECT_TAB_OFFSET计算出来的,我们可以找到关于它们的定义,如图5所示。


图5 FLASH_BASE和VECT_TAB_OFFSET的定义


通过图5中的计算,正好可以得出整个中断向量表被映射到了0x8000000地址处。



    STM32的FLASH分配

前面的大段文章内容中,频繁提及了一个关键的数值,即0x8000000,那么这个0x8000000到底是怎么来的呢?这个数值并不是平白无故拍脑袋想出来的。之前我们就说过,ARM体系的存储器结构是其一大特色,而这个0x8000000正是整个STM32内置FLASH的起始地址。我们随便打开一份STM32的数据手册,在存储器章节里面就可以看到STM32全部的存储器定义。如图6所示。

图6 STM32内部FLASH的起始地址



   STM32的Bootloader思路

抛开所有的Bootloader高级功能来说,我们设计STM32 Bootloader的主要目的有两个,第一个为方便程序烧写和更新,第二个目前是从Bootloader程序中跳转(引导)用户的应用程序。这两个目的中,对于Bootloader来说程序跳转尤其重要,因为程序跳转成不成功将会严重影响整个用户程序的运行状态。因而,怎么跳,何时跳,跳到哪里,则是下篇文章的着重讨论部分。

前面一个FLASH烧写,可以根据自己的特殊要求来定制,只要严格安装HEX文件指定的地址和数据的关系,一般不会出错。


本文分析了STM32启动时比较重要的一些定义和函数跳转,下篇将会开始着手设计一个STM32 Bootloader。




乐创客 我们从来不培养程序猿,我们只是嵌入式技术的搬运工
评论 (0)
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 133浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 53浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 123浏览
  • 自动驾驶技术的飞速发展,正在重新定义未来出行的边界。从感知到决策,从规划到控制,每一个环节都离不开海量、精准的高质量数据支撑。然而,随着传感器数量的增加和数据规模的指数级增长,行业正面临一系列挑战:多源传感器数据的时间同步难题、复杂数据格式的适配、测量技术的灵活性不足、设备集成周期冗长等,这些问题正成为自动驾驶研发与测试的“隐形瓶颈”。基于技术积累与行业洞察,本文分享一套创新的ADAS时空融合数据采集方案。通过硬件与软件的深度协同优化,能够很好地解决数据采集中的核心痛点,还为自动驾驶研发提供了高
    康谋 2025-04-17 09:54 94浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 92浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 123浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 183浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 93浏览
  • 【摘要/前言】4月春日花正好,Electronica就在浪漫春日里,盛大启幕。2025年4月15-17日,慕尼黑上海电子展于上海新国际博览中心成功举办。伴随着AI、新能源汽车、半导体的热潮,今年的Electronica盛况空前。请跟随Samtec的视角,感受精彩时刻!【 Samtec展台:老虎的朋友圈技术派对】借天时、占地利、聚人和,Samtec 展台人气爆棚!每年展会与大家相聚,总能收获温暖与动力~Samtec展台位于W3展馆716展位,新老朋友相聚于此,俨然一场线下技术派对!前沿D
    电子资讯报 2025-04-17 11:38 59浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 30浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 170浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 162浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 113浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦