汽车以太网如何影响ECU和传感器设计

汽车电子与软件 2021-08-25 20:43


概述



汽车以太网不是一项新技术。但在几年前,它却很新,以至于没有人知道它是否可以集成到汽车中。
 
虽然,搭载车载以太网技术的汽车已经量产,但是,关于车辆 ECU 和传感器如何受该技术影响的问题仍然存在。本篇文章,笔者分享一下汽车以太网如何影响 ECU 和传感器的硬件部分。
 
在硬件方面,我主要讨论 PCB、 PCB 上的芯片、连接器、电缆以及不同的芯片、微控制器、DSP等。接下来我们对不同的硬件组件进行一个概述。

为了更好地理解不同组件的硬件架构( ECU 和传感器)如何受到汽车以太网的影响。笔者这里定义了一个具体的应用程序示例,使我们能够更好地了解整个故事的开始以及该应用程序如何影响车辆 ECU 和传感器的硬件架构。

笔者将基于带有汽车以太网的高级驾驶辅助系统,对整个车载网络进行了概述。


图1 带有汽车以太网的ADAS

一般在ADAS系统中,主要有三种类型的传感器——用于视觉的摄像头传感器、用于距离检测的雷达传感器和用于道路上不同物体大小的激光雷达传感器。我们可以使用不同的以太网技术,用于将这些传感器集成到 ADAS ECU。

ADAS实际上是负责处理来自不同传感器的所有数据的感知过程,并决定由哪个 ECU做出关于车辆运动控制的决定。因为这是将要做出的决定,例如,如何控制车辆的制动系统、车辆的动力系统以及车辆的转向系统,所以ADAS ECU实际上是高级辅助驾驶系统的大脑。

这意味着如果司机在开车,当司机犯错时,ADAS ECU 将负责纠正这些错误。例如,如果司机忘记刹车,如果前方有障碍物,ADAS ECU 将检测该障碍物,然后执行车辆运动控制,使车辆能够及时刹车,以避免与位于车辆前方的障碍物发生碰撞。


ADAS ECU 上的传感器



接下来我们来看看传感器。正如笔者已经说过的,我们拥有三种不同类型的传感器。对于视觉,我们有摄像头传感器。摄像头传感器是为了检测物体,将图片发送到 ADAS ECU,后者将执行图片识别和处理算法,以便准确检测环境中的物体,道路上的物体,车辆路径上的物体。

其实最重要的是摄像头传感器会检测到对ADAS ECU有用的物体。所以我们在前部有一个摄像头,在右侧和左侧也有一个摄像头,在后侧还有一个摄像头,用于提供车辆的全景视图,这是一个关于 ADAS ECU 的过程。

我们在车辆顶部还有一个摄像头传感器,以便检测道路上很远距离的物体。这可能是距离很远的小物体,可以通过摄像机传感器的视频检测到。我们也可以有宽视野传感器,以检测交通标志等,或道路上的一些行人。

这里笔者只解释了一个传感器,但实际上,车辆上的这个位置可能有多个摄像头传感器。

除了视觉、检测模式之外,我们还有负责距离检测的雷达传感器。通过天线发射毫米波等,在障碍物上反射后,反射波会被雷达预处理,并检测不同的位置并将其放入传输到 ADAS ECU 的以太网帧中。从而可以访问、评估和分析该车辆与其他车辆或其他道路参与者之间的距离,从而帮助 ADAS ECU 做出有关车辆运动控制的正确决策。

这就是为什么大多数时候我们在同一辆车上安装不同类型的雷达传感器。为了在车辆上具有不同的感应能力,我们有远程雷达传感器、中程雷达传感器以及短程雷达传感器,具体使用哪种传感器,取决于将要检测到的内容

所以,在图1中,我们在前面有两个雷达传感器,一个在右侧,另一个在左侧。并且在后部也有相同的配置,而且在中部,我们也有相同的配置。当然这只是一个例子,实际设计时,取决于要在车辆中实现的功能和功能要求来配置雷达传感器的数量及位置

当我们谈论自动驾驶,那么我们需要更多的传感器,甚至可能是两个 ADAS ECU。在这里,我们仅谈论驾驶员辅助系统,以便对网络的外观进行概述。

我们还有基于点云的激光雷达传感器。激光雷达传感器可以评估或测量道路上不同物体的体积大小。ADAS ECU 也需要这些信息,以便能够了解道路上正在发生的事情、当前情况、驾驶情况道路等,从而相应地控制车辆。

因此,激光雷达传感器可以位于角落,例如在图1中,在两个角落,在右侧和左侧。右左两个角的后部也是相同的配置。

我们在需要在车辆中安装不同的传感器集群,并向 ADAS ECU 发送不同的数据类型。接下来我们谈一下传感器和ECU之间的连接以及这样的星形拓扑,有些人称之为树拓扑。

汽车以太网的优势之一是使用不同的数据传输速率。这就是为什么这里使用不同颜色来区分数据速率的原因。不同的传输速率使汽车以太网技术的扩展性非常强,以满足处理网络内部数据的需要。

图1中以棕色表示1000 BASE-T1 技术,以太网数据以每秒 1 Gb 的速率传输。蓝色表示 100 BASE-T1,表示以太网数据以每秒 100 Mb的速率传输。所以我们这里有不同的数据速率。

这种不同的数据速率也会对 ADAS ECU 的硬件架构产生影响,这也是为什么我们需要了解网络架构的原因。ADAS ECU 如何设计,取决于该 ADAS ECU 如何连接到集群中的其他组件。

而且,网络也会对摄像头/雷达/激光雷达传感器的硬件架构产生影响。接下来我们谈谈所使用的以太网技术如何影响硬件架构。

传感器 & Eth



概述



我们将直接进入 ECU 和传感器的硬件架构,我们从雷达传感器开始。如图2所所示,这里的雷达传感器由两个主要芯片组成。

图2 雷达传感器硬件架构

上图是雷达传感器硬件架构的一个整体视图,包含雷达ASIC以及微控制器。当然,微控制器可以是 DSP,也可以是FPGA 之类的东西。但在这里我们仅展示这种组件硬件架构之外的逻辑。

图2中的雷达ASIC是专用集成电路,该电路肯定连接到天线,天线负责发射雷达无线电波,也负责接收反射无线电波,这里的波都是电磁波。

当电磁波到达雷达 ASIC 时,会被转换为电信号。这些电信号被转换为数字信号,并且在传感器检测到的位置之前,有一个预处理机制在雷达 ASIC 中运行,然后将数字信号通过 SPI 接口传输到微控制器。


检测和测距



接下面我们看一下检测和测距和过程,结果数据会发送到目标控制器。微控制器通过SPI接收的数据可以使用 DMA 来存,以节省CPU资源的消耗,SPI 控制器可以直接将数据存储在 DMA 中。

当无法将数据存储到存储器中时,CPU 应该参与启动过程。这意味着这里应该使用中断控制器来阻止 CPU 执行当前正在执行的操作。以便 CPU 将到达的数据存储到运行内存中,这取决于应用程序、CPU的速度以及CPU 的负载情况。这里笔者想说明的是,可以使用不同的方式( DMA 或 RAM 存储器)来存储自雷达 ASIC 的数据。

需要说明的是,当使用存储数据的运行内存时,SPI 控制器将向中断控制器发送中断请求,然后中断控制器会发送一个电信号来停止 CPU,这样CPU就会运行相应的中断服务程序,它实际上是存放在闪存中的。

当准备好位置数据时,它会发送到 MAC,这就是跟以太网相关的地方,MAC 是主要的访问控制器。我们有很多关于 MAC 地址等的信息。MAC 地址实际上是物理地址,以便为以太网控制器寻址。所以我们这里的 MAC用于负责构建以太网帧。

MAC 控制器将向 PHY 发送以太网帧,PHY 实际上是收发器。和CAN做比较的话,那么MAC就是控制器,PHY就是收发器,类似于CAN通信的控制器和收发器。

我们这里将以太网具体分离为 MAC 和 PHY 以及 MII 接口。MII接口是一个独立接口,不依赖于所使用的具体以太网技术。如果在这里使用光纤,那么从一个连接器(图2左侧)到另一个连接器的话,这个接口将不依赖于另一个接口,它将始终是相同的接口(MII 接口)。

这意味着 MAC 上发生的一切并不取决于 LAN 的外观,例如,电缆的外观、连接器的外观等等。它并不真正依赖于所使用的真正技术。MII接口取决于Bit的速度,数据传输速度,该速度取决于数据在 LAN 上传输的速度。

这里笔者将以每秒百兆位的范围传输,这里使用的 MII 接口应该能够以每秒百兆位的速度传输数据。


PHY



我们有一个物理层PHY,PHY 用于保留永恒帧,然后 PHY 会放置一些装备,例如前导码等,以便与接收器同步。然后这个 PHY 也将负责Bit的物理编码,这些Bit将被转换成模拟电信号,然后向下传输到 LAN。

这里我们有一个主要的依赖接口,即依赖于以太网技术的电路,用于传输数据。这个主要的依赖接口实际上是一个普通的接口。比如共模扼流圈等。

共模扼流圈用于简单地抑制电磁干扰或噪声,最重要的是,还可以使用一些过滤器来积极过滤信号。这可能会在 MDI 中实现,具体取决于信号传输的频率。


连接器



图2中有连接器。连接器在此处显示两个引脚。表示一个带有两个针脚的连接器,以太网正负号,以及每根双绞线的信号。这里可以使用多种类型的连接器,例如用于处理数据传输到双绞线的磁性连接器。

如图2所示,我们使用全双工通信,这意味着发送器(即与 ADAS ECU 相连的雷达传感器)可以传输电信号,而其他 ECU 也可以将其信号传回。

因此,我们可以在同一条线路上进行反向定向通信。需要注意的是,这里没有电缆屏蔽,每根单绞线用于每秒 100 MB 的数据传输,这是以太网上 100 BASE-T1 技术的典型示例。

除了我们在这里看到的 MAC、 MII 接口、 PHY以及MDI 接口连接连接器和电缆外,剩下的基本都取决于与以太网无关的传感器技术。

ECU & ETH



ADAS ECU 概述



如图3所示为ADAS ECU,图中有摄像头传感器,所以可以传输图片或视频数据。图3中还有一个接口,笔者这里放的是PCIe控制器接口,因为PCIe接口可以更快地传输大数据。与雷达传感器相比,摄像头的数据量大很多。

图3 ADAS ECU

成像仪实际上是将光转换为电信号,而这种电信号也转换为数字信号,这样信号就可以被微控制器处理了,此处存储数据的情况也与雷达传感器解释的情况相同。在这里,我们也看到了到 ADAS ECU 的传输和 LAN,我们也有与雷达传感器相同的组件。
 
但在需要注意的是,我们以每秒 1 Gb 的速度传输数据红色全双工。实际上,这意味着 MII 在 MAC 和 PHY 之间的干扰具有每秒1 Gb的数据速率。我们已经看到,对于雷达传感器,此处的 MII 接口应具有每秒 100 Mb的数据速率。还应该在 MII 接口上将 MAC 和 PHY 之间的数据速率缩短一半。

上图中,我们看到它比传感器架构复杂得多。在 ADAS ECU 上会有不同的芯片,有一个以太网交换机、一块PCB以及微控制器。它可能是一个 DSP,也可能是一个 FPGA。


连接器与交换机



我们有第一部分,包括连接到我们拥有的传感器的连接器。我们还有另一部分负责通过微控制器进行数据处理,它是位于微控制器芯片中的 CPU。该 CPU 将运行传感器数据融合过程,该过程将运行 AI 算法等,所以这是所有 ADAS ECU 的大脑。

当然,许多进程都运行在软件中,这些软件会中断控制器以处理 CPU 运行的不同任务。如果我们想优化一切,可以使用 DMA 来执行存储,而无需 CPU 参与。

这基本上就是在微控制器中发生的事情,用于处理一切。但是在传感器和处理实体的接口之间,我们有很长的路要走。此路径由不同的以太网交换机构成。交换机实际上是在 PCB 上构建的芯片,用于转发来自传感器的数据。

一个交换机可以有多个端口,我以具有六个端口的交换机为例。我们总共有 15 个传感器向 ADAS ECU 发送数据,所以我们最后需要 15 个连接器。

为了有连接这15 个连接器,我们有三个交换机来连接这些传感器。我们将5个摄像头传感器、5个激光雷达、5个毫米波雷达连接到 ADAS ECU。

交换机包含一个 PHY,负责将数据转发到处理实体的方向。因此,来自 5 个雷达传感器的数据将保留在交换机上。这里会有一个MAC实体转发到下一个交换机,这将被转发到 PCIe 接口到处理实体(微控制器)。对于其他交换机也是相同的

还有一个重要的事情是在 PCB 上,对于两个芯片之间的通信,PCB 上需要两个以太网交换机,并且需要类似 MII 的接口。在 PCB 上需要有接口将这两个交换机连接到 MAC。在这里,我们使用类似 MII 的接口,这对于另外两个交换机和本交换机之间的链路也是相同的,但是,重要的是要了解实际使用的 MII 接口类型。

图3中,我们有五个雷达传感器传输数据,数据速率为每秒 100 Mb,所以我们每秒有500 Mb数据进入交换机。如果MAC们使用每秒100 Mb 的普通 MII 接口,就会遇到交通堵塞。因为每秒有 500 Mb进入,而每秒只有 100Mb输出。这意味着输入比输出快,所以我们将在交换机内部遇到越来越多的交通拥堵。

因此,交换机内部存在日益拥堵的风险,来自雷达传感器的重要数据会丢失,这是不可接受的。交换机出现拥塞丢失是完全不能接受的。这就是为什么这里使用 GMII 接口,数据速率为每秒 1 Gb,这比每秒 500 Mb 快两倍。在这种情况下,我们非常确定我们将避免或至少减少这里的交通拥堵。这样我们就不需要那么大的buff内存来阻止流量。

以摄像头传感器为例,如果使用千兆以太网,就意味着我们会以每秒 5 Gb的总体速度输入到下一个交换机,这是可能的个传感器同时发送数据。

如果我们这里有 5 Gb/s,我们就不能再使用 GMII 接口,因为输出只有 1 Gb/s。如果我们使用它,我们将获得每秒 5 Gb的总输入,但总输出为每秒 1 Gb,肯定会造成堵塞。所以我们需要使用 XFI 供应接口来实现每秒 10 Gb的数据速率。

为什么是 XFI?为什么这里每秒 10 Gb?因为当前我们没有任何基于以太网的技术可以实现10Gb每秒的传输,这就是为什么我们必须在这里使用 XFI 接口以每秒 10 Gb的速度传输数据。


微控制器与交换机



如图3 含有PCIE接口的交换机所示,这里我们有1个每秒 1 Gb 的输入数据作为输入,2个每秒 10 Gb作为输入,也就是我们每秒总共有 21 Gb的整体数据速率作为输入。所以这个时候,我们不能在交换机和微控制器之间的使用XFI 接口。

因为我们每秒有 10 Gb的输出,但是有每秒 21 Gb的输入,这也会造成堵塞问题,有堵塞风险和缓冲区溢出风险。所以这就是这里使用 PCIe 5.0 ,数据速率大于 22 Gb/s。

这也是笔者之前所说的,ADAS ECU的硬件架构依赖于网络架构。因此,在设计之前,了解您将与多少个传感器通信的 ADAS ECU 非常重要。

实际上,笔者这里是在不知道不同接口上的带宽占用情况时做出这样的决定。这基本上是大部分时间发生的事情。但是,如果我们考虑每个雷达传感器以每秒 5 Mb的带宽利用率发送数据的情况。这意味着数据速率是每秒百兆位。但是您使用的可用带宽仅为每秒 5 兆位。

因此,雷达传感器仅使用该带宽的 5%。那么接下来会发生什么呢?我们在交换机上的总体带宽利用率为每秒 25 Mb。因此,在这种带宽利用率为每秒 25 Mb的特定情况下,使用每秒 100 兆比特的普通 MII 接口就可以了。因为整体带宽利用率仅为线路的25%。所以它也会很好。

这里有一个例子,我们考虑一下。我们到处都有千兆以太网。所以我们在这里使用 GMII 而不是 XFI 有 500 兆比特每秒。如果我们知道带宽利用率,这将是任何问题。而这里也一样。如果我们有,我们也可以在这里使用 GMII。

总的来说,我们在进行车辆硬件架构进行设计时,应避免在网络内使用非常大的 buff 内存等情况的发生。在此之前,需要首先对汽车网络进行了解,因为汽车网络技术将会影响到汽车ECU和传感器的硬件部分。

END
视频推荐:智能汽车时代,如何提升研发效率


扫码立即观看

汽车电子与软件 主要介绍汽车电子软件设计相关内容,每天分享一篇技术文章!
评论
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 100浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 49浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 423浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 121浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 339浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 195浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 183浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 390浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦