在“AD/DA JESD204B简介与确定性延迟”一文中,我们总结了JESD204B子类和确定性延迟, 并给出了子类0系统中多芯片同步的应用层解决方案详情。本系列的第二部分详细讨论子类1和子类2的不同之处。具体而言,我们将讨论满足确定性延迟相关的时序要求时遇到的挑战、子类2中器件时钟速度限值,以及对于给定的系统应用,采用何种子类效果最佳的相关指导。
子类1
精确捕获SYSREF
确定性延迟不确定性
图2. 满足SYSREF设置与保持时间的DLU
最小化确定性延迟不确定性
若要满足设置与保持时间要求,JESD204B系统中的每一个器件都应有自己的SYSREF/DCLK对。可通过在各对内实现走线长度匹配,从而保证时序。走线长度匹配限值由SYSREF开关的有效窗口时间确定。此外,SYSREF应在DCLK的捕获边沿上输出,且SYSREF长度必须大于DCLK的长度,以满足保持时间要求(如果THOLD等于0,则长度可以相等)。
由于采用了走线长度匹配,最小化对内分布偏斜基本上等同于最小化SYSREF分布偏斜。该分布偏斜限值等于DLU限值减去有效窗口时间,同样可以通过走线长度匹配来处理。DLU限值由应用要求所决定。
这些最小化DLU的方法如图3所示。由于JESD204b系统中的每一个器件都有各自的SYSREF/DCLK对,满足捕获 SYSREF的时序要求与使用源同步时钟的任何系统类似。每 个器件的时序裕量都视为与系统中的其他器件无关。
图3. 由3个器件组成的JESD204B系统的SYSREF/DCLK路由
使用AD9250的SYSREF时序示例
AD9250是一款14位、250MSPS双通道ADC,具有JESD204B串行数据输出能力,额定速率为5 Gbps。为了最大程度提升PLL性能,AD9250可支持高达1.5 GHz的器件时钟速度。这便为如何在最苛刻的系统DLU要求下使用走线长度匹配来满足SYSREF时序提供了一个极佳的演示实例。以下为本例条件:
1、DCLK = 1.5 GHz (667 ps周期)
2、TSU = 500 ps 和THOLD = 0 ps
3、例如,系统 DLUMAX = 1 DCLK (667 ps)
满足SYSREF时序的对内走线长度匹配
满足这一要求可以保证SYSREF在有效窗口期间进行转换, 如图4所示。DLU等于器件时钟是满足SYSREF时序要求的最差情况。
满足DLU限值的对内走线长度匹配
由于DLU限值为667 ps,并且我们知道DLU限值和对内(或 SYSREF)分布偏斜(DSSYSREF)之间的关系,因此便可直接推导出走线长度匹配限值:
因此,所有SYSREF/DCLK对的对内分布偏斜必须在下式计算值以内:
图5显示了此示例的时序。“最佳情况”分布偏斜(DSSYSREF)指的是允许较为宽松的走线长度匹配要求。500 ps表示SYSREF最差情况下的偏斜,应当用来确定走线长度的匹配限值。
满足DLU限值的对内走线长度匹配
图6. 满足时序要求的SYSREF可编程相位延迟
SYSREF设置和保持时间监控
ADI的AD9680可实现SYSEREF设置和保持时间监控电路,协助调节SYSREF和器件时钟之间的相对时序。用户监控这两个寄存器,便能确定捕获SYSREF时是否存在违背时序要求的风险。如果任一寄存器给出时序裕量不足的指示,用户就应当调节SYSREF与器件时钟的相对位置。在上例中,通 过调节SYSREF相对于器件时钟的相位(比如利用AD9528), 或者通过调节SYSREF和/或器件时钟信号的走线长度,即可实现该操作。
确定性延迟精度
为了更好地理解系统的确定性延迟不确定性是如何设置的,需对应用有所了解。要求确定性延迟的大部分系统需精确知道哪个时间样本标记目标数据的起始。确定性延迟经常用来同步系统中的多个转换器。这称为多芯片同步。在这些系统中,所有转换器都需要进行样本对齐。因此, 确定性延迟必须具有“样本精度”。这些系统的DLU应当等于±½ 样本时钟。器件时钟等于采样时钟倍数的优势是通过样本精确性来简化捕获SYSREF的任务。在采用AD9250的示例中,器件时钟等于采样时钟的6倍。为了实现样本精度,±½采样时钟的DLU要求可以转化为±3 器件时钟, 如图7所示。从我们采用AD9250的示例中可以看到,有了调节每个器件SYSREF相位的能力,则哪怕最苛刻的DLU要求也能轻松得到满足。当器件时钟为采样时钟的倍数时,捕获SYSREF以实现样本精度将得到极大的简化。随着转换器的采样速率上升至1 Gbps及以上,SYSREF以及器件时钟实现相位延迟的能力将会变得非常重要。
图7. SYSREF捕获的“样本精度”要求
SYSREF捕获的潜在问题
子类2
精确捕获并启动SYNC
满足精确捕获SYNC~所需时序要求时面临的挑战与子类1的讨论中捕获SYSREF所面临的挑战基本相同。然而,由于子类2采用系统同步的时钟方案,因此各捕获器件无法单独执行时序分析,并且在多转换器应用中情况还将变得更为复杂。不仅如此,还必须考虑到启动SYNC~信号后的不确定性。系统中,每一个采用系统同步时钟的器件都将消耗部分时序预算。消耗时序预算的因素有:时钟分布偏斜 (DSDCLK)、用于多转换器系统的SYNC~分布偏斜(DSSYNC~)、 SYNC~信号传播延迟、每个JESD204B发送器的设置与保持 时间要求,以及每个JESD204B接收器SYNC~输出端的时钟到SYNC~输出延迟。
子类2中器件时钟上限
JESD204B标准确认采用子类2会限制器件时钟速率,这是因为系统同步时钟方案所导致。标准的附录B建议此限值为500 MHz:让我们来讨论一个详细的时序示例,说明为什么会有这样的限制。
子类2多DAC时序示例
让我们考察将两个子类2 DAC器件连接到单个逻辑器件的发送器应用,如图9所示。
例如,使用500 MHz器件时钟。SYNC~和DCLK信号的PCB偏斜如下所列。
1、时钟到FPGA = 300 ps
2、时钟到DAC1 = 600 ps
3、时钟到DAC2 = 720 ps
4、SYNC~1 到FPGA = 660 ps
5、SYNC~2 到FPGA = 750 ps
然而,一旦加入设置时间、抖动以及PVT变化,便很容易出现时序冲突,如图11所示。本例中,设置时间为500 ps, PVT变化最多会引入300 ps,并且抖动为150 ps。在最终到达的SYNC~ (SYNC~ 2)处产生了时序冲突。 SYNC~输出端以及两个时钟输出端的PVT变化。DLCK和SYNC~上的抖动。
子类2确定性延迟不确定性
表1. 影响子类2 DU的时序变量
子类2系统中的DLU由TCLK至SYNC、TPD_SYNC~、TSU三者的关 系,以及系统中器件时钟的分布偏斜(DSDCLK)所决定。在单转换器应用中,最佳情况的DLU由下式给出,并且如图 12所示。
在图中, TSU是½ TDCLK和THOLDis ¼ TDCLK。如图所示,DLCK 经偏斜后匹配DCLK至SYNC~延迟和SYNC~传播延迟,并且刚好满足设置时间要求。
图12. 单转换器应用的子类2 SYNC~捕获时序 (最佳情况DLU)
当发送器的DCLK偏斜不足,且与第一个可用捕获边沿的设置时间相冲突时,便是单转换器子类2系统的最差情况DLU,如图13所示。
图13. 单转换器应用的子类2 SYNC~捕获时序 (最差情况DLU)
哪个子类最适合您的应用?
子类2器件也可用于500 MHz以下的应用中。在较低速率下使用子类2的一个小优势,是它可以减少逻辑器件的IO数,且无需将SYSREF路由至每一个JESD204B器件。
参考电路
声明:
投稿/招聘/推广/宣传 请加微信:15989459034