利用可采用电子方式重新配置的 GaN 功率放大器,彻底改变雷达设计

Qorvo半导体 2021-08-23 17:37

本博文最早刊登在《微波产品摘要》*

文首次展示了一种基于多频段发射器设计的可靠商用大功率放大器,该放大器采用了 Charles Campbell 演示的可重新配置的 PA 专利技术 [2,3,4]可重新配置的 PA 采用可根据每个相关频段的控制位设置重新配置的单输入和单输出匹配网络。每个位设置针对特定频段的最优性能配置所有匹配网络,从而使 PA 能够在紧凑型封装中实现最优系统级性能。这样就可以减少整体尺寸和重量。这种新型可重新配置的 PA 设计方法可克服传统多频段发射前端设计的多个缺点。最明显的优势就是可消除 PA 输出的频段选择开关。从而将输出损耗降低了 0.8-1.0 dB,使其与传统设计方法相比具有明显的优势。如果设计采用最佳负载阻抗和智能开关布局,可重新配置 PA 则可接近通过特定的独立调谐频段放大器实现的性能水平。


现代雷达系统配置为多频段雷达,可在各种环境和目标条件下使用多个频段来解析复杂的情景。这些系统可提供无与伦比的性能水平,并且能够检测和跟踪敌对目标。例如,双频段雷达 (DBR) 是美国海军舰队使用的第一款能够同时操作两个频段(S/X 频段)的雷达系统,由单个资源管理器进行协调 [1]。S 频段信号不易受恶劣天气和大气衰减的影响。另一方面,X 频段通常用于高分辨率的目标成像应用。目前大多数功率放大器 (PA) 都不适合多频段雷达系统,因为所需的频段相距太远,且各个 PA 都在每个目标频段上进行了优化。有几种方法可通过在各个 PA MMIC 之间切换来实现宽带或多频段特性。这些方法使用覆盖两个频段的宽带非均匀分布式 PA (NDPA) 或双通带功率放大器设计。


与宽带放大器相比,可重新配置 PA 的优势更明显。在宽带放大器设计中,负载阻抗通常设计为低于最佳负载目标值,以实现高输出网络带宽。宽带放大器降低了输出功率和功率附加效率 (PAE)。因此,合成最佳负载阻抗的能力是可重新配置 PA 设计的关键。这最终能够增加放大器场效应晶体管 (FET) 外围,从而在热限制范围内最大限度地提高输出功率。这些设计原理已在 Qorvo 的新产品 QPA0007** 中得以实现。QPA0007 是一款可重新配置的 30 W S/X 频段功率放大器,采用了 Qorvo 150 nm 栅极长度 GaN HEMT 工艺技术 (QGanN15)。可重新配置放大器与宽带和传统多频段方法之间的比较如图 1 中所示。


图 1:多频段功率放大器前端比较


工艺和封装技术

Qorvo 的 QGaN15 工艺技术非常适用于 X 频段的高功率 PA 设计。它采用具有高栅漏击穿电压的快速晶体管,非常适合大功率应用。QGaN15 提供针对不同电路应用的多个工艺选项。对于 QPA0007,采用了一种专利工艺技术来提高设备和电路性能。顶部金属层支持使用更窄的输出匹配走线,从而在保持金属电流密度设计规则的同时显著减少物理面积。输出网络损耗对金属厚度不是很敏感。在 X 频段下,使用钝化层会降低电路性能,但支持使用经济高效的封装。在芯片上使用钝化层的第二个好处是,与只使用无钝化层的超模压制封装相比,它有助于提高 FET 和无源网络建模精度。使用成本更高的气腔封装可消除钝化层,从而实现更高的电路性能。


QPA0007 采用经济高效的超模压制式 7mm x 6mm 电镀散热器 (PHS) 封装技术。PHS 封装非常有利于灵活设计,为设计人员提供了良好的片下散热路径,适用于中等输出功率的设备。各种输入和输出连接以及比较大的焊盘间距可实现较高的 PCB 附件成品率。在评估板上 (EVB),可从顶部或底部连接控制引脚以及栅极引脚。为实现漏极连接的可靠性,需从两侧进行连接。QPA0007 封装引脚分配和尺寸,以及评估板如图 2 所示。


Figure 2: QPA0007 PHS package and evaluation board


电路设计

从根本上说,QPA0007 就是一款两级无功匹配的功率放大器。频段切换由片上电平位移器控制的可切换电容和电感实现,该电平位移器可调整开关 FET 偏置电平。每个网络的设计都旨在保持各频段的最佳负载。与频段特定的设计相比,这只需要进行较小的权衡。输出网络损耗是其中一个关键的设计参数,且受开关损耗的影响。幸运的是,与在 PA 输出处使用单独的频段选择开关相比,这些开关损耗比较小。无论是从整体损耗角度来看,还是从复杂性和大小角度来看,调谐开关数量都达到最低。通常,为实现低开关损耗,开关外围往往会变大,因此关断电容会比较高。关断电容在确保开关元件的有效性方面发挥着重要作用。这限制了可切换并联电容在输出网络中的可用性。通常情况下,S 频段的调谐电感要比 X 频段大得多。在信号路径中,使用串联开关来调谐串联电感意义不大,因为会产生额外的开关损耗,应在实现接近最佳负载目标值方面做出适当妥协。


级间匹配网络与输出网络的设计环境不同。级间匹配网络受到带宽和空间的限制,而不是损耗的限制。因此,可在多个位置使用较小的开关,以实现最佳负载目标值。


比较输出和级间网络时,输入网络的损耗要求比较宽松,且拥有更多的开关和控制信号空间,所以具有最大的灵活性。输入网络和级间网络对放大器的稳定性能都具有一定的影响。增加额外损耗可确保在各种工作条件下的稳定性,尤其是极寒条件下。调谐电容和 FET 端子设计能够在最大输入驱动条件下承受较高的电压常驻波形无线电 (VSWR) 负载条件,以避免击穿。


最后,整体设计挑战是在不破坏 X 频段增益的同时限制 S 频段小信号增益。较低频率 FET 性能有助于提高 S 频段性能,但在不降低 X 频段性能的情况下扩展低端带宽的挑战会限制 S 频段性能。即使采用可切换调谐元件,这也极具挑战性。


性能

QPA0007 经过调谐可覆盖 S 频段 3.1-3.5 GHz 和 X 频段 9-11 GHz。这两个频段切换信号互补,S 频段为 0 V 和 -10 V,X 频段为 -10 V 和 0 V。控制信号会导致 5 mA 的拉电流或灌电流,取决于频段选择。


在不低于 26V 的条件下,QPA0007 的静态偏置电流为 700 mA。由于输入功率会迫使漏极电流上升,输出功率和 PAE 完全不受静态偏置电流的影响。因此,可以根据其他性能参数(如小信号增益和切换时间)来设置静态偏置电流。


所有报告的测量结果都是从生产 EVB 那里获得,并使用 QPA0007 输入和输出引脚进行了校准。在 25℃ 条件下,测得的 S 频段小信号增益为 27 dB,X 频段小信号增益为 23 dB。这种小信号增益差反映了 FET 在整个频段中的性能变化。S 频段的输入回波损耗高于 20 dB,而 X 频段则为 10 dB。测得的 S 参数如 3 所示。


图 3:QPA0007 S/X 频段 S 参数


在 S 频段下,QPA0007 的输出功率为 45 dBm,PAE 为 48%。最佳工作点的大信号增益为 21 dB,电流消耗为 2.6 A。在 X 频段下,输出功率为 44.5 dBm,PAE 为 32%。大信号增益为 18.5 dB,电流消耗为 3.6 A。这些结果是在漏极脉冲为 100 µs/1 ms 条件下测得的。 4 为S/X 频段大信号性能曲线


图 4:S/X 频段输出功率和 PAE


谐波是在 50 Ω 负载下测得的。S 频段的第二谐波低于 -25 dBc,第三谐波为 -25 dBc。X 频段的第二和第三谐波分别为 -35 dBc 和 -55 dBc。


QPA0007 的小信号和驱动稳定性已在 -40℃、VSWR 为 10:1 的负载条件下进行了测试。设备可靠性已在 85℃、VSWR 为 3:1 的负载条件下使用极端输入驱动进行了测试,结果无任何性能下降。


切换时间可分为两类:射频信号打开时无频段切换和频段切换的同时射频打开。在实际应用中,可能不需要在频段切换的同时打开射频,但这可以说明设备的能力。频段范围内的切换时间不到 100 ns。频段切换的同时打开射频的时间不到 1 µs。在两种使用条件下,射频关断几乎都是瞬间完成。


在 100 µs 脉冲宽度和 1 ms 脉冲周期期间,S 频段下的功耗为 40 W,而 X 频段下为 70 W。可通过使用漏极脉冲或射频脉冲来实现脉冲。在 85℃ 基板温度条件下,这种脉冲特性可将设备结温保持在低于长期稳定性限值。完成了综合热分析,以验证基于测量数据的热分析结论。QPA0007 完全符合 MSL 3 和 HBM 250V 额定生产要求。 1 总结了测得的 EVB 结果。


表 1:QPA0007 测量的数据性能摘要




总结



与传统的频段切换功率放大器前端相比,本文所展示的可重新配置的多频段功率放大器方法具有明显优势。Qorvo 的 QPA0007 采用了专利技术,是业界首款使用同一设备在 S/X 频段下都能改进输出功率和效率性能的产品。此外,QPA0007 可为客户提供外形尺寸具有竞争力的高性价比大规模封装。



*《微波产品摘要》

https://www.mpdigest.com/2021/05/21/revolutionizing-radar-design-with-electronically-reconfigurable-gan-power-amplifiers/

** QPA0007

https://www.qorvo.com/products/p/QPA0007




致谢



作者感谢 Terry Hon、Paul Prudhomme、Gregory Clark、Sujo Vegus、Gary Petree 和 Reilly Martinez 的个人贡献和出色支持。


参考文献:

[1] https://www.raytheon.com/capabilities/products/dbr

[2] Campbell, C. F. 等人《可采用电子方式重新配置的匹配网络》美国专利 10,164,587,于 2018 年 12 月 25 日发表。

[3] Campbell, C. F.、Kobayashi, K. W. 和 Lee, C.《可重新配置的 S/X 频段 25W GaN 功率放大器 MMIC》,2019 年 GOMAC-Tech。

[4] http://imapsne.org/virtualCDs/2019/2019%20Presentations/C/C2.pdf



Qorvo半导体 射频领域技术分析与分享, 半导体行业信息交流
评论
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 238浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 147浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 128浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 211浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 126浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 92浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 80浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 163浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 123浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 113浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 172浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦