模拟CMOS集成电路仿真设计基础(3):mos管的rout与L

原创 硬件电路设计与研究 2021-08-21 13:56

本次推文就从mos管的rout与L仿真结果与经典长沟模型的差异,来体味理想与现实的落差吧。这种体验有助于我们体会mos电路设计的复杂性,体会经典理论的设计指导性,体会到手工计算不能没有,也不能完全靠手工计算。文中的操作视频请关注后续推文。


一、长沟器件rout与L关系

首先我们来看看,教科书上的rout与L关系,在拉扎维的模拟CMOS集成电路一书第21页,探讨了经典的沟道长度调制问题:

我们注意到,当栅和漏之间的电压差增大时,实际的反型沟道长度逐渐缩小,



二、rout与gds

在用ADE仿真时,软件会计算出两个参数,一个是rout,一个是gds,按理说两种应该是倒数关系,那么在仿真软件里是否如此?结果确实如此,下面之间看仿真结果,rout2就是1/gds,从扫描不同Vgs和L的曲线可见两者完全一致,符合预期:


三、rout与L

按近似公式,lambda正比于1/L,而Id也正比于1/L,所以其他参数不变时,rout应该正比于L的平方,那么实际情况如何?

Vds

V2阻抗

V2的L

V1阻抗

V1的L

V3阻抗

V3的L

V4阻抗

V4的L

2.8

3.4804M

31u

2.4489M

23u

3.8881M

34u

4.7352M

40u

2.5

3.4163M

31u

2.3949M

23u

3.8199M

34u

4.6584M

40u

2.2

3.3062M

31u

2.3049M

23u

3.7018M

34u

4.5232M

40u

1.9

3.1042M

31u

2.1464M

23u

3.4824M

34u

4.2671M

40u

1.6

2.6988M

31u

1.8453M

23u

3.0354M

34u

3.7322M

40u


在其他参数不变情况下,如果rout与L*L成正比,则rout1=K*L1*L1,rout2=K*L2*L2 => rout1=rout2*(L1^2/L2^2),以此计算,发现偏差较大,即实际rout与L*L不是线性关系:

Vds

rout2/rout1

(L2/L1)^2

rout4/rout1

(L4/L1)^2

rout3/rout1

(L3/L1)^2

2.8

1.4212

1.8166


1.9336

3.0246

1.5877

2.185

2.5

1.4265

1.9451

1.5950

2.2

1.4344

1.9624

1.6060

1.9

1.4462

1.988

1.6224

1.6

1.4625

2.0225

1.645


上表明显可见rout与L*L成正比的关系,在实际器件模型应用中偏差较大,我们仿真的模型都是远大于5um沟长的,高阶的短沟效应应该不是太明显,那么偏差出现在哪里?在我们的分析中,发现与rout的L有关两项分别为lambda和Ids,下图是Ids与L的仿真曲线,非常好地符合了长沟的Ids正比于1/L,那么偏差应该主要来自前述的lambda假设,即实际模型里delta L/L并不是正比于Vds,当然变化趋势是对的,这么假设是为了简化分析,抓住主要矛盾,也说明此关系和工艺本身也密切相关:


那么放开物理机制,仅就仿真数据分析,我们会得到什么信息?

我们可以合理假设:

如果此关系成立,在计算x前能否直观地从仿真数据里看出来?答案是有可能的,如果

现在我们将仿真图用对数坐标显示如下:

从曲线看,不同的VDS下的rout按沟长分成了两段直线,在2um-3um除是两段直线的分界点,这也符合短沟、长沟效应的大致分界,关键是分界处左右微小变化,难道就导致rout明显不同吗?其实这是物理建模的原因,因为复杂的、没有准确的解析解的过程,基本都是采用不同方程式分段建模,在分界点往往会造成不连续、误差增加,这是目前很难克服的问题,好在其基本不影响我们的设计使用,这也是前述选取点都“非常”奇怪地远离这个区域的原因吧。

既然我们在对数坐标下,看到了直线,那么说明我们前面的假设,仅就数据分析而言是合理的,那么x取多少?通过简单数学分析,发现x取0.22左右,得到可以接收的结果:

Vds

rout2/rout1

(L2/L1)^1.22

rout4/rout1

(L4/L1)^1.22

rout3/rout1

(L3/L1)^1.22

2.8

1.4212

1.439


1.9336

1.964

1.5877

1.611

2.5

1.4265

1.9451

1.5950

2.2

1.4344

1.9624

1.6060

1.9

1.4462

1.988

1.6224

1.6

1.4625

2.0225

1.645


至此,我们的分析只涉及smic13mmrf工艺库的n33模型的简单仿真数据,不涉及机理,不同的厂家工艺库、不同的mos器件,其分析结果会有差异,有兴趣的同学可以取试试,费了半天劲,最后我们发现rout不是与L的平方成正比,而是大概与L的1.2次方成比例,这对我们的电路设计还是有意义的,比如根据经典长沟模型,在设计放大器时,增益不够,可能会想到增加L,虽然ft与Vov/(L*L)成比例而衰减,但是gm*rout按经典模型应该和L*Vov成比例,实际设计时会发现虽然本增益会随L增加,但是远没有预期那么大,因为rout并没有按照L*L关系变化,所以靠增加L换增益有点得不偿失,远不如cascode\两级放大等手段好。下图是gm*rout与L的关系仿真曲线:


图中取了两点:L=8um时,gm*rout=1.0969k;L=16um时,gm*rout=1.2389k,按照经典长沟模型,此时的gm*rout应该差2倍,实际偏差较大,如果取我们先前的修正x=0.22,则16um的计算本征增益应该为1.0969*(16/8)^0.22=1.2776k,结果偏差可以接受。



硬件电路设计与研究 研究riscv架构处理器、敏捷软件开发、IC设计、模拟电路设计、高速电路设计仿真等
评论
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 159浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 60浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 58浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 71浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦