为什么提高感性负载功率因数要并联电容器而不是串联?

原创 面包板社区 2021-08-20 20:00

日前,EDN小编的邮箱中收到美版知乎Quora发来的一个有趣的话题:为什么提高功率因数都是用的并联电容器而没人用串联呢?今天我们就对这个话题讨论讨论。

在讨论之前首先来了解一下衡量功率因数的意义。

众所周知,我们大部分电气负载都是感性负载。比如,工厂中的各种电动机,家庭中的各种用电器具——电磁炉、洗衣机、冰箱和空调中的压缩机等——都有大量的感性负载,这些负载都需要提供电源才能运转起来。但是电源提供的功率并不能完全被这些感性负载消耗掉,这就牵扯到对电源功率的利用率的问题了,也就是要去衡量功率因数这个指标。

功率因数的大小与电路的负荷性质有关。功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。所以,供电部门对用电单位的功率因数都是有一定的标准要求的。EDN小编还记得当初在电表厂工作时被派去一家供电局出差,正好就遇到了某个工厂功率因数很低的情况。当时供电局的朋友还问我,这是什么原因呢?…

有网友指出,提高功率因数的主要方法是要合理使用各种感性负载,最好不要用大功率的电动机去拖动小功率的负载,这样能够避免“大马拉小车”的情况。然后,最简单的解决方法就是在感性负载两端并联合适的电容器。

下面就回到今天的话题:为什么是并联电容器而不是串联呢?

Quora网友Paschalis Gkaidatzis认为,串联电容器也是可以的,同样可以提高功率因数。电压降不是什么大问题。串联电容器的标称压降范围在标称传输电压的 10-20% 之间。真正的问题是保护和随之而来的成本:在负载发生短路故障的情况下,有可能将整个标称传输电压施加在这些电容器上而引起它们爆炸。当然,可以通过合适的断路开关和隔离间隙火花来防止其产生过压。但这会带来额外的安装和运维成本,而并联电容器却可以避免这个情况。因此,将电容器并联连接,可以为自己或客户节省一笔不小的开支。

此外,并联电容器时,安装是分开的,因此更易于维护。例如,如果需要更改电容器组当中的一部分或添加更多的电容器,并联的方法只需要将电容器组与网络的其余部分断开,而不是将整个设备断开。

网友Fernandez Osmond对此补充说,唯一的原因是成本及其应用的实用性。 将任何串联电路连接到电源线后,它会承载总负载电流。因此就需要使用高kVA容量的电容器。如果可以通过连接多个低容量电容器来实现所需的可变电抗,那么从成本和实用性的角度来看,为什么要去用串联呢?

另一位网友Rishab Anand则表示,连接串联电容器实际上会通过补偿传输线电感(串联补偿)来提高用电端的电压。串联使用太小的电容值会导致过度补偿,从而使负载上可能出现大于源电压的电压(费兰蒂效应)。

此外,串联电容器会略微提高发电机所看到的功率因数。然而,它不会像并联电容器那样在本地补偿感性负载的无功功率需求,因此负载的功率因数将保持不变。

因此,串联和并联电容器都可以。串联补偿用于改善负载电压调节,并联补偿用于改善功率因数。

Subodh Mishra也表示,从数学上讲,并联和串联电容器都可以提高功率因数(仅当负载为感性时),但在电力系统中,主要目的是保持恒定的负载电压,而串联电容器会导致负载两端的电压下降。如果并联电容器,则可以确保负载两端的电压恒定,同时可以提高功率因数。

知乎网友Patrick Zhang也一语中的:串联会改变负载的工作电压,使其电压低于额定电压。因而无功补偿必须将补偿电容与负载并联。

SwordLiberty则对此进行了一番数学推导:

对于低压供电系统中无法确定线路中的感性负载的电感量,采用并联方式为最佳选择,并且容易采集电感负载的电感量,利用功率因数来自动调节补偿电容器的容量大小达到补偿的目的。此时,电感负载的端电压与电容端电压大小相等,相位相反,互相补偿,电阻端电压等于电源电压。首先得了解电容补偿的原理。在交流供电系统的电路中,电阻、电感、电容元件的电压、电流的相位特点为:在纯电阻电路中,电流与电压同相位;在纯电容电路中电流超前电压90°;在纯电感电路中电流滞后电压90°。在交流电路中,平均功率P=UIcosΦ,其中cosΦ称为功率因数,也就是电压U与电流I之间的余弦。从物理意义上看,功率因数是有功功率UIcosΦ与视在功率UI的比值。常用的计算公式如下:

当功率与电压为一定值时,并联电容器补偿,功率因数会提高,则需要的电流越小,如果采用串联电容在电路中,电路无法连接在一起,不能够补偿。如果电路呈现电阻性负载,则无需补偿,电流与电压相位相同。另外,电容器串联阻抗最小,电流最大:这时Z=R,则I=U/R。串联谐振时电感(电容)端电压与电源电压的比值称为品质因数Q,也等于感抗(或容抗)和电阻的比值。当Q>>1时,L和C上的电压远大于电源电压(类似于共振),这称为串联谐振,这种方式的谐振常用于信号电压的放大;但在供电电路中串联谐振应该避免。从供电角度,理想的负载是P与S相等,功率因数cosφ为1。此时的供电设备的利用率为最高。而在实际上是不可能的,只有假设系统中的负荷,全部为电阻性才有这种可能。电路中的大多数用电负荷设备的性质都为电感性,这就造成系统总电流滞后电压,使得在功率因数三角形中,无功Q边加大,则功率因数降低,供电设备的效率下降,如下图所示:

功率三角形是一个直角三角形,用cosφ(即φ角的余弦)来反映用电质量的高低。大量的感性负载使得在电力系统中从发电一直到用电的电力设备没有得到充分的应用,相当一部分电能,如果没有采用电容补偿,它将经过输配电系统与用户设备之间进行往返交换,白白浪费了。低压供电系统中的电容电流与电感电流相位差为180°,称作互为反相,可以利用这一互补特性,在配电系统中并联相应数量的电容器。用超前于电压的无功容性电流抵消滞后于电压的无功感性电流,使系统中的有功功率成分增加,cosφ得到提高。

总结

从以上讨论可以发现,用串联电容器的方法改善功率因数,理论上来说也不是不行,但是这会增加系统的设计和运维成本,并会使电路的性能(输出电压)降低。所以,大家在做功率因数补偿时应当选用并联方法。



免费开发工具申请





更多精彩干货,点击下方关注查看



关注『面包板社区』,后台回复"关键词"领取300 G学习资料包如:电源、电机、嵌入式、信号系统、模电、华为、电子学、电路、c语言...)



#推荐阅读#

  • 施耐德PLC内部拆解,看起来相当过瘾!

  • 电感工作原理动画视频

  • 保护电路的TVS管为什么经常损坏

  • 超详细USB Type-C引脚信号及PCB布局布线介绍

  • 【完全吃透】征服傅里叶变换

  • SMT贴片元件基础知识

  • 弃卒保帅:反思华为服务器的出售事件

  • 拆开步进电机来仔细讲一讲

  • X电容和Y电容的区别

  • 你真的吃透了电阻的用法吗?


点击阅读原文,下载《新型实用电路制作200例》

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 207浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 862浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 100浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 139浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 754浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 173浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 217浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 164浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 101浏览
  • 书接上回:【2022年终总结】阳光总在风雨后,启航2023-面包板社区  https://mbb.eet-china.com/blog/468701-438244.html 总结2019,松山湖有个欧洲小镇-面包板社区  https://mbb.eet-china.com/blog/468701-413397.html        2025年该是总结下2024年的喜怒哀乐,有个好的开始,才能更好的面对2025年即将
    liweicheng 2025-01-24 23:18 59浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 401浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦