反激式开关电源设计步骤详解

电子芯期天 2021-08-16 09:20


步骤1 确定开关电源的基本参数

①   交流输入电压最小值umin

②   交流输入电压最大值umax

③   电网频率Fl  开关频率f

④   输出电压VO(V):已知

⑤   输出功率PO(W):已知

⑥   电源效率η:一般取80%

⑦   损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5


步骤2 根据输出要求,选择反馈电路的类型以及反馈电压VFB


步骤3 根据输入电压u(例如:220V),PO值确定输入滤波电容CIN、整流后直流输入电压最小值VImin

①    令整流桥的响应时间tc=3ms

②    根据u,查出CIN值(查表,得出经验值)

③    得到VImin(例如,交流220V,整流后直流电压)

确定CIN,VImin值

u(V)

PO(W)

比例系数(μF/W)

CIN(μF)

VImin(V)

固定输入:100/115

已知

2~3

(2~3)×PO

≥90

通用输入:85~265

已知

2~3

(2~3)×PO

≥90

固定输入:230±35

已知

1

PO

≥240


对于输入滤波电容的选择介绍的是,经过整流桥后的滤波电容。220V/50HZ的交流市电,经过整流桥后变成了‘馒头波’,很显然这个没有经过电容滤波的电压是不能给后面负载用的。整流桥后的电容把‘馒头波’变成了直流电压,滤波电容在这里相当于一个大水缸,起到滤波和储能的作用。这个电容一般会选择一个大的铝电解电容用来储能以及滤除低频干扰,再并联上一个小的CBB电容用来滤除高频干扰也可以降低输入的阻抗值。铝电解电容的大小一般是按照输入功率来选择的2uF/W,一般会留有2倍的余量。由于市电经过整流桥后的电压高达370V,所以选择的电容耐压值要大于这个值。本次选择的是100uF/400V的铝电解电容。


步骤4根据u,确定VOR、VB

①    根据u由表查出VOR、VB值

②    由VB值来选择TVS

u(V)

初级感应电压VOR(V)

钳位二极管              反向击穿电压VB(V)



固定输入:100/115

60

90


通用输入:85~265

135

200


固定输入:230±35

135

200


大家都知道电感电流不能突变,因此线圈两端将会产生很高的电压,U=Ldi/dt(本文忽略电位参考方向,均以正值表示)。


如果我们再加一个绕组,根据电磁感应知识,显然上图中左边线圈通I后,右边线圈上端将感应正电压,但是由于二极管反向,所以无电流流过次级线圈。

那么此时电流I突然消失会怎样了?

此时由于次级线圈的存在,初级电流将按匝数关系转换到次级线圈,即右边线圈下端感应正电压,二极管导通,将会有电流流过右边的线圈。

通常我们所说的电感电流不能突变,仅仅是针对单绕组电感而言的,其本质是磁通不能突变或能量不能突变。

所以对于多绕组电感而言,一定要记住其本质是什么。

当次级线圈有电流流过试图维持磁芯中磁通量的时候,初级线圈又会感应到一定的电压,下正上负,此电压即我们通常说的反射电压Vor。此反射电压Vor与次级线圈的电压是满足匝比关系的。在反激拓扑中,初级线圈上端接的是母线电压Vin,所以初级线圈下端电压即在Vin基础上叠加了一个Vor电压。

总的来说,必须对反射电压有所了解,才能顺利开展后面的相关计算。而理解这些问题的关键,就是在于对磁通(能量)的深刻理解,并保持不能够突变,其余的同样按照这个过程进行推导即可。


步骤5根据Vimin和VOR来确定最大占空比Dmax

①    设定MOSFET的导通电压VDS(ON)

②    应在u=umin时确定Dmax值,Dmax随u升高而减小

步骤6确定初级纹波电流IR与初级峰值电流IP的比值KRP,KRP=IR/IP

u(V)

KRP

最小值(连续模式)

最大值(不连续模式)

固定输入:100/115

0.4

1

通用输入:85~265

0.4

1

固定输入:230±35

0.6

1


步骤7确定初级波形的参数

步骤8根据电子数据表和所需IP值选择TOPSwitch芯片


对于设计一款电源电路来说,首先是要选择一款电源管理芯片,然后是设计变压器和反馈电路部分,最后是电路板的上电调试。随着集成电路技术的不断发展,电源管理芯片做的也是越来越好。现在设计一款开关电源只需要选好电源芯片,然后按照芯片数据手册把电路搭出来其基本工作就完成了一半,接下来就是调试电源的各项参数了,不像以前集成电路技术不是很成熟的时候,那时还没有电源管理芯片,需要自己用三极管等元件搭建电源芯片所实现的功能电路。


 

①考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值ILIMIT(min)应满足:0.9 ILIMIT(min)≥IP


步骤9和10计算芯片结温Tj

①按下式结算:

Tj=[I2RMS×RDS(ON)+1/2×CXT×(VImax+VOR) 2 f ]×Rθ+25℃

式中CXT是漏极电路结点的等效电容,即高频变压器初级绕组分布电容

②如果Tj>100℃,应选功率较大的芯片


 步骤11验算IP  IP=0.9ILIMIT(min)

①    输入新的KRP且从最小值开始迭代,直到KRP=1

②    检查IP值是否符合要求

③    迭代KRP=1或IP=0.9ILIMIT(min)


步骤12计算高频变压器初级电感量LP,LP单位为μH

               

 步骤13选择变压器所使用的磁芯和骨架,查出以下参数:

①    磁芯有效横截面积Sj(cm2),即有效磁通面积。

②    磁芯的有效磁路长度l(cm)

③    磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2)

④    骨架宽带b(mm)


步骤14为初级层数d和次级绕组匝数Ns赋值

①    开始时取d=2(在整个迭代中使1≤d≤2)

②    取Ns=1(100V/115V交流输入),或Ns=0.6(220V或宽范围交流输入)

③    Ns=0.6×(VO+VF1)

④    在使用公式计算时可能需要迭代

  步骤15计算初级绕组匝数Np和反馈绕组匝数NF

                  

  步骤16~步骤22设定最大磁通密度BM、初级绕组电流密度J、磁芯的气隙宽度δ,进行迭代。

步骤23确定次级参数ISP、ISRMS、IRI、DSM、DSm



步骤24确定V(BR)S、V(BR)FB

①    次级整流管最大反向峰值电压V(BR)S

V(BR)S=VO+VImax×NS/NP

②    反馈级整流管最大反向峰值电压V(BR)FB

V(BR)FB=VFB+ VImax×NF/NP

   步骤25选择钳位二极管和阻塞二极管

步骤26选择输出整流管

步骤27利用步骤23得到的IRI,选择输出滤波电容COUT

①   滤波电容COUT在105℃、100KHZ时的纹波电流应≥IRI

②   要选择等效串连电阻r0很低的电解电容

③   为减少大电流输出时的纹波电流IRI,可将几只滤波电容并联使用,以降低电容的r0值和等效电感L0

④   COUT的容量与最大输出电流IOM有关

   步骤28~29当输出端的纹波电压超过规定值时,应再增加一级LC滤波器

①   滤波电感L=2.2~4.7μH。当IOM<1A时可采用非晶合金磁性材料制成的磁珠;大电流时应选用磁环绕制成的扼流圈。

②   为减小L上的压降,宜选较大的滤波电感或增大线径。通常L=3.3μH

③   滤波电容C取120μF /35V,要求r0很小

步骤30选择反馈电路中的整流管

步骤31选择反馈滤波电容

            反馈滤波电容应取0.1μF /50V陶瓷电容器

步骤32选择控制端电容及串连电阻

            控制端电容一般取47μF /10V,采用普通电解电容即可。与之相串连的电阻可选6.2Ω、1/4W,在不连续模式下可省掉此电阻。

步骤33选定反馈电路


反馈元件主要是光耦和431的选择,光耦要选择线性光耦,431在选择的时候要注意431的参考电压是多少(有1.25V的也有2.5V的)。开关电源的光耦主要是隔离、提供反馈信号和开关作用。开关电源电路中光耦的电源是从高频变压器次级电压提供的,当输出电压低于稳压管电压时给信号光耦接通,加大占空比,使得输出电压升高;反之则关断光耦减小占空比,使得输出电压降低。一旦高频变压器次级负载超载或开关电路有故障,就没有光耦电源提供,光耦就控制着开关电路不能起振,从而保护开关管不至被击穿烧毁。TL431是TI公司生产的一个有良好的热稳定性能的三端可调分流基准源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。
本次选择的光耦是EL1018,正向电流有60mA,正向电压1.5V。EL1018具有超高的爬电距离:大于8mm,符合最新安规5000米海拔要求;绝缘电压可达5Kvrms,符合最新安规5000米海拔要求;超低输入启动电流(1mA),超低功耗驱动;符合最新的所有安规及环保要求。
本次选择的TL431的参考电压为2.5V。



步骤34选择输入整流桥

步骤35 设计完毕

在所有的相关参数中,只有3个参数需要在设计过程中进行检查并核对是否在允许的范围之内。它们是最大磁通密度BM(要求BM=0.2T~0.3T)、磁芯的气隙宽度δ(要求δ≥0.051mm)、初级电流密度J(规定J=4~10A/mm2)。这3个参数在设计的每一步都要检查,确保其在允许的范围之内。


END

以上来源:网络

往期精彩

1、超详细USB Type-C引脚信号及PCB布局布线介绍

2、超详细开关电源芯片内部电路解析;

3、70G硬件设计资料汇总分享;【友情推荐

4、分享一份老工程师(某为工作15年)经常使用的pcb企业封装库包含3D库;【友情推荐

5、【0基础学硬件】为什么在VCC入口串联一个小电阻?可以不加吗?

6、高薪工作机会分享。【找工作看这里

关注【电子芯期天】后台回复关键字免费资料。获取PCB封装库规范、PCB设计设计规范、华为EMC基础知识、开关电源入门知识等资料。

电子芯期天 致力于分享各种电子电路开发设计资料及经验.
评论
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 110浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 143浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 103浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 114浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 96浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 142浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 141浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 107浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 138浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 85浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 126浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 170浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 92浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦