反激式开关电源设计步骤详解

电子芯期天 2021-08-16 09:20


步骤1 确定开关电源的基本参数

①   交流输入电压最小值umin

②   交流输入电压最大值umax

③   电网频率Fl  开关频率f

④   输出电压VO(V):已知

⑤   输出功率PO(W):已知

⑥   电源效率η:一般取80%

⑦   损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5


步骤2 根据输出要求,选择反馈电路的类型以及反馈电压VFB


步骤3 根据输入电压u(例如:220V),PO值确定输入滤波电容CIN、整流后直流输入电压最小值VImin

①    令整流桥的响应时间tc=3ms

②    根据u,查出CIN值(查表,得出经验值)

③    得到VImin(例如,交流220V,整流后直流电压)

确定CIN,VImin值

u(V)

PO(W)

比例系数(μF/W)

CIN(μF)

VImin(V)

固定输入:100/115

已知

2~3

(2~3)×PO

≥90

通用输入:85~265

已知

2~3

(2~3)×PO

≥90

固定输入:230±35

已知

1

PO

≥240


对于输入滤波电容的选择介绍的是,经过整流桥后的滤波电容。220V/50HZ的交流市电,经过整流桥后变成了‘馒头波’,很显然这个没有经过电容滤波的电压是不能给后面负载用的。整流桥后的电容把‘馒头波’变成了直流电压,滤波电容在这里相当于一个大水缸,起到滤波和储能的作用。这个电容一般会选择一个大的铝电解电容用来储能以及滤除低频干扰,再并联上一个小的CBB电容用来滤除高频干扰也可以降低输入的阻抗值。铝电解电容的大小一般是按照输入功率来选择的2uF/W,一般会留有2倍的余量。由于市电经过整流桥后的电压高达370V,所以选择的电容耐压值要大于这个值。本次选择的是100uF/400V的铝电解电容。


步骤4根据u,确定VOR、VB

①    根据u由表查出VOR、VB值

②    由VB值来选择TVS

u(V)

初级感应电压VOR(V)

钳位二极管              反向击穿电压VB(V)



固定输入:100/115

60

90


通用输入:85~265

135

200


固定输入:230±35

135

200


大家都知道电感电流不能突变,因此线圈两端将会产生很高的电压,U=Ldi/dt(本文忽略电位参考方向,均以正值表示)。


如果我们再加一个绕组,根据电磁感应知识,显然上图中左边线圈通I后,右边线圈上端将感应正电压,但是由于二极管反向,所以无电流流过次级线圈。

那么此时电流I突然消失会怎样了?

此时由于次级线圈的存在,初级电流将按匝数关系转换到次级线圈,即右边线圈下端感应正电压,二极管导通,将会有电流流过右边的线圈。

通常我们所说的电感电流不能突变,仅仅是针对单绕组电感而言的,其本质是磁通不能突变或能量不能突变。

所以对于多绕组电感而言,一定要记住其本质是什么。

当次级线圈有电流流过试图维持磁芯中磁通量的时候,初级线圈又会感应到一定的电压,下正上负,此电压即我们通常说的反射电压Vor。此反射电压Vor与次级线圈的电压是满足匝比关系的。在反激拓扑中,初级线圈上端接的是母线电压Vin,所以初级线圈下端电压即在Vin基础上叠加了一个Vor电压。

总的来说,必须对反射电压有所了解,才能顺利开展后面的相关计算。而理解这些问题的关键,就是在于对磁通(能量)的深刻理解,并保持不能够突变,其余的同样按照这个过程进行推导即可。


步骤5根据Vimin和VOR来确定最大占空比Dmax

①    设定MOSFET的导通电压VDS(ON)

②    应在u=umin时确定Dmax值,Dmax随u升高而减小

步骤6确定初级纹波电流IR与初级峰值电流IP的比值KRP,KRP=IR/IP

u(V)

KRP

最小值(连续模式)

最大值(不连续模式)

固定输入:100/115

0.4

1

通用输入:85~265

0.4

1

固定输入:230±35

0.6

1


步骤7确定初级波形的参数

步骤8根据电子数据表和所需IP值选择TOPSwitch芯片


对于设计一款电源电路来说,首先是要选择一款电源管理芯片,然后是设计变压器和反馈电路部分,最后是电路板的上电调试。随着集成电路技术的不断发展,电源管理芯片做的也是越来越好。现在设计一款开关电源只需要选好电源芯片,然后按照芯片数据手册把电路搭出来其基本工作就完成了一半,接下来就是调试电源的各项参数了,不像以前集成电路技术不是很成熟的时候,那时还没有电源管理芯片,需要自己用三极管等元件搭建电源芯片所实现的功能电路。


 

①考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值ILIMIT(min)应满足:0.9 ILIMIT(min)≥IP


步骤9和10计算芯片结温Tj

①按下式结算:

Tj=[I2RMS×RDS(ON)+1/2×CXT×(VImax+VOR) 2 f ]×Rθ+25℃

式中CXT是漏极电路结点的等效电容,即高频变压器初级绕组分布电容

②如果Tj>100℃,应选功率较大的芯片


 步骤11验算IP  IP=0.9ILIMIT(min)

①    输入新的KRP且从最小值开始迭代,直到KRP=1

②    检查IP值是否符合要求

③    迭代KRP=1或IP=0.9ILIMIT(min)


步骤12计算高频变压器初级电感量LP,LP单位为μH

               

 步骤13选择变压器所使用的磁芯和骨架,查出以下参数:

①    磁芯有效横截面积Sj(cm2),即有效磁通面积。

②    磁芯的有效磁路长度l(cm)

③    磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2)

④    骨架宽带b(mm)


步骤14为初级层数d和次级绕组匝数Ns赋值

①    开始时取d=2(在整个迭代中使1≤d≤2)

②    取Ns=1(100V/115V交流输入),或Ns=0.6(220V或宽范围交流输入)

③    Ns=0.6×(VO+VF1)

④    在使用公式计算时可能需要迭代

  步骤15计算初级绕组匝数Np和反馈绕组匝数NF

                  

  步骤16~步骤22设定最大磁通密度BM、初级绕组电流密度J、磁芯的气隙宽度δ,进行迭代。

步骤23确定次级参数ISP、ISRMS、IRI、DSM、DSm



步骤24确定V(BR)S、V(BR)FB

①    次级整流管最大反向峰值电压V(BR)S

V(BR)S=VO+VImax×NS/NP

②    反馈级整流管最大反向峰值电压V(BR)FB

V(BR)FB=VFB+ VImax×NF/NP

   步骤25选择钳位二极管和阻塞二极管

步骤26选择输出整流管

步骤27利用步骤23得到的IRI,选择输出滤波电容COUT

①   滤波电容COUT在105℃、100KHZ时的纹波电流应≥IRI

②   要选择等效串连电阻r0很低的电解电容

③   为减少大电流输出时的纹波电流IRI,可将几只滤波电容并联使用,以降低电容的r0值和等效电感L0

④   COUT的容量与最大输出电流IOM有关

   步骤28~29当输出端的纹波电压超过规定值时,应再增加一级LC滤波器

①   滤波电感L=2.2~4.7μH。当IOM<1A时可采用非晶合金磁性材料制成的磁珠;大电流时应选用磁环绕制成的扼流圈。

②   为减小L上的压降,宜选较大的滤波电感或增大线径。通常L=3.3μH

③   滤波电容C取120μF /35V,要求r0很小

步骤30选择反馈电路中的整流管

步骤31选择反馈滤波电容

            反馈滤波电容应取0.1μF /50V陶瓷电容器

步骤32选择控制端电容及串连电阻

            控制端电容一般取47μF /10V,采用普通电解电容即可。与之相串连的电阻可选6.2Ω、1/4W,在不连续模式下可省掉此电阻。

步骤33选定反馈电路


反馈元件主要是光耦和431的选择,光耦要选择线性光耦,431在选择的时候要注意431的参考电压是多少(有1.25V的也有2.5V的)。开关电源的光耦主要是隔离、提供反馈信号和开关作用。开关电源电路中光耦的电源是从高频变压器次级电压提供的,当输出电压低于稳压管电压时给信号光耦接通,加大占空比,使得输出电压升高;反之则关断光耦减小占空比,使得输出电压降低。一旦高频变压器次级负载超载或开关电路有故障,就没有光耦电源提供,光耦就控制着开关电路不能起振,从而保护开关管不至被击穿烧毁。TL431是TI公司生产的一个有良好的热稳定性能的三端可调分流基准源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。
本次选择的光耦是EL1018,正向电流有60mA,正向电压1.5V。EL1018具有超高的爬电距离:大于8mm,符合最新安规5000米海拔要求;绝缘电压可达5Kvrms,符合最新安规5000米海拔要求;超低输入启动电流(1mA),超低功耗驱动;符合最新的所有安规及环保要求。
本次选择的TL431的参考电压为2.5V。



步骤34选择输入整流桥

步骤35 设计完毕

在所有的相关参数中,只有3个参数需要在设计过程中进行检查并核对是否在允许的范围之内。它们是最大磁通密度BM(要求BM=0.2T~0.3T)、磁芯的气隙宽度δ(要求δ≥0.051mm)、初级电流密度J(规定J=4~10A/mm2)。这3个参数在设计的每一步都要检查,确保其在允许的范围之内。


END

以上来源:网络

往期精彩

1、超详细USB Type-C引脚信号及PCB布局布线介绍

2、超详细开关电源芯片内部电路解析;

3、70G硬件设计资料汇总分享;【友情推荐

4、分享一份老工程师(某为工作15年)经常使用的pcb企业封装库包含3D库;【友情推荐

5、【0基础学硬件】为什么在VCC入口串联一个小电阻?可以不加吗?

6、高薪工作机会分享。【找工作看这里

关注【电子芯期天】后台回复关键字免费资料。获取PCB封装库规范、PCB设计设计规范、华为EMC基础知识、开关电源入门知识等资料。

电子芯期天 致力于分享各种电子电路开发设计资料及经验.
评论 (0)
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 69浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 33浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 127浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 113浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 49浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 64浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 99浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 52浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 62浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 66浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦