电子元件性能下降,如何才能保护您的模拟前端呢?

原创 亚德诺半导体 2021-08-15 10:14

何谓 EOS?

EOS是一个通用术语,表示因为过多的电子通过相应路径试图进入电路,导致系统承受过大压力。有一点需要注意,这是一个随功率和时间变化的函数。


如果将复杂电路看作一个简单的消耗功率的元件,例如,将它视为一个电阻。在额定功率为1 W的1 Ω电阻上施加1.1 V电压,计算功耗的公式如下:



计算得出,消耗的功率为1.21 W。虽然电阻的额定功率为1 W,但是可能存在一些余量,所以暂时不用担心这一点。但并不能够始终如此。


将电压增加到2 V,会出现什么情况?如果功耗达到之前示例的4倍,那么电阻可能会像一个空间加热器在很有限的时间内提高环境温度,但是请记住这个公式:



如果将电压增加到10 V,但仅持续10毫秒呢?有趣的地方就在这里:如果不了解部件,以及设计处理部件的目的,您就无法真正了解会对该部件产生什么影响。现在,来看看整个元件系统。


哪些部分易受EOS影响?


一般而言,任何包含电子元件的部分都容易受到EOS影响。特别薄弱的部分是那些与外界的接口,因为它们很可能是最先接触到静电放电(ESD)、雷击等的部分。我们感兴趣的部件包括USB端口、示波器的模拟前端,以及最新的高性能物联网混合器的充电端口等。


图1. 8 kV时的理想接触放电电流波形。


如何知道要防范哪些问题?


虽然我们想要保护系统免受电气过载,但是这个术语太宽泛了,对于决定如何保护系统没有任何帮助。为此,IEC(以及许多其他组织)做了大量工作来弄清楚在现实生活中可能会遇到的EOS类型。接着将重点探讨IEC规范,因为它们涵盖广泛的市场应用,而与该规范相关的混乱状况也说明需要本文来厘清。表1显示了三个规范,它们定义了系统可能遇到的EOS状况类型。在本文中只对ESD做深入探讨,同时也会让大家熟悉电快速瞬变(EFT)和浪涌。


图2. 符合IEC61000-4-4标准的电快速瞬变4级波形。


表1. IEC规范


集成电路制造商如何应对芯片ESD?


芯片中的保护主要用于应对制造过程中的ESD,而不是在系统通电状态下的ESD。这一差异非常重要,因为在放大器连接电源和没连接电源时,其在遭受静电时的反应截然不同。例如,内部保护二极管可消除在无电源供电时对部件的静电放电冲击。但是,当有电源供电时,对部件的静电放电冲击可能会使内部结构传导的电流超过其设计承受水平,这可能导致该部件损毁,具体由部件和电源电压决定。


这是全球范围内亟待解决的问题!如何保护IC免受这种潜在威胁?


希望您能够意识到,这个挑战涉及很多因素,一个简单的解决方案是无法应用于所有情况的。下方是一个涉及因素列表,列出了决定部件能否承受EOS事件的因素。这些因素分为两组:无法控制的因素和可以控制的因素。


无法控制的因素:
  • IEC波形:ESD、EFT和浪涌的曲线各有不同,它们会以不同的方式攻击器件的某些弱点。
  • 考虑器件的工艺技术:有些工艺技术比其他技术更容易发生闩锁。例如,CMOS工艺容易发生闩锁,但在许多现代工艺中,可以通过精心设计和沟槽隔离来减轻这种危害。
  • 考虑器件的内部结构:集成电路的设计方法很多,所以对一种电路有效的保护方案对另一种可能无效。例如,许多器件都有时序电路,检测到波形足够快时,就会启动保护结构。这可能意味着,如果您在静电放电的位置增加更多电容,那么能够承受静电放电冲击的器件可能无法承受这种电容冲击。这种结果出乎意料,但认识到以下这一点非常重要:常见的电路保护方法,即RC滤波器,可能会让情况更糟。

图3. IEC61000-4-5浪涌在8 μs/20 μs电流波形位置转为正常状态。


可以控制的因素:
  • PCB布局:部件离冲击的位置越近,其电能波形就越高。这是因为,当冲击波形沿某条路径传播时,从传播路径辐射出去的电磁波会有能量损耗、这是由于路径电阻产生的热量以及与周边导体耦合的寄生电容和电感所导致。
  • 保护电路:这是对器件的生存能力最有意义的部分。上述无法控制的因素将会影响保护方案的设计。


现在有过压保护(OVP)和过限额(OTT)特性。可以利用这些特性来保护电路不受高压瞬变影响吗?

OVP和OTT特性让部件的输入在承受超过电源电压的电压时,本身不会受到损坏。依靠这些特性来保护电路不受高压瞬变影响,就像是依靠雨靴来应对高压冲水机一样。雨靴只对水深不超过其高度的浅水沆有效,就像OVP和OTT只适用于比其额定值低的电压。OVP和OTT的额定电压比给定的供电轨电压高几十伏。它无法抵抗8000V的高压。


如何知道保护电路是否有效?


通过结合器件知识、经验和测试,大致可以知道,系统中应该采用哪些部件最有利。为了保证器件可控,各家制造商提供了五花八门的保护组件,本文只讨论两种经证实能够有效保护模拟前端的电路保护方案。以下方案假设采用一个缓冲配置的运算放大器。这被认为是最严格的保护测试,因为同相输入会承受所有冲击,除此以外,电能无处可去(安装保护电路之前)。


图4. IEC-61000-4-2测试中采用的电路。


设计考量:
  • R1应该是一个防脉冲(厚膜)电阻,这样它在经受高压瞬变时不会轻易毁坏。
  • R1电压噪声与电阻值的平方根成正比,如果系统需要低噪声,这是一个重要的考虑因素。
  • C1应该是一个陶瓷电容,其封装尺寸至少为0805,以减小封装的表面电弧。
  • C1至少应为X5R类型温度系数的电容(理想为C0G/NP0类型),以保持可预测的电容值。
  • C1内部的等效串联电感和电阻应尽可能低,以便有效吸收冲击。
  • 针对给定的封装尺寸,C1的额定电压应尽可能高(最低100 V)。
  • 在本例中,C1的位置在R1之前,因为它构建了一个电容分压器,其中150 pF 电容(如图5所示)将ESD波形放电到系统中,这样在放大器经受波形之前,能量已经先分流。


图5. 通过在模拟输入端配置低通滤波器实现输入保护。


RC网络保护方案


RC网络保护方案


注意:虽然这种前端保护方法并没有得到电容制造商的认可,但在针对放大器的数百次测试中证明是有效的。ESD测试曲线(如下所述)仅在有限范围的电容产品上进行过测试,因此,如果使用不同的电容产品,需要先表征其应对冲击的特性,例如通过测量经受ESD冲击之前和之后的电容和等效串联电阻的 方法,这一点非常重要。该电容器件应保持容值稳定,并且在被冲击后,始终在直流下保持开路状态。


设计考量:
  • 与RC网络相同:R1应能承受脉冲,但可能需要考虑噪声。
  • 应该指明D1需要满足的标准。有些可能只涵盖ESD,其他的则涵盖EFT和浪涌标准。
  • D1应该是双向的,这样它就可以同时应对正负冲击。
  • D1反向工作电压应尽可能高,同时仍需通过必要的测试。如果过低,在正常的系统电压电平下可能出现漏电流。如果过高,则可能无法在系统损坏之前做出反应。

TVS二极管泄漏对性能的影响


在模拟电子领域,大家都知道TVS二极管容易发生泄漏,因此不能用于精密模拟前端。但有时情况不是这样,许多数据手册中的泄漏电流< 100µA,对于大多数模拟产品这个值是相当高的。对于这个数值,问题在于,它是在最高温度(150°C)和最大工作电压下的取值。在这种情况下,二极管极易泄漏。超过85°C,所有二极管的泄漏电流会更高。只要选择反向工作电压更高的TVS二极管,且不期望在85°C以上实现极低漏电流,则有望获得更低的泄漏电流。


图6. 通过在模拟输入端配置TVS二极管实现输入保护。


TVS网络保护方案


如果您选择了合适的TVS,泄漏电流值可能低到让您惊讶。图7所示为测量12个相同产品型号的TVS二极管时获得的泄漏数据。


图7. 36 V双向TVS二极管Bournes T36SC的泄漏值,在TIA中采用ADA4530评估板,带屏蔽,在25°C时采用10 G电阻。


在测量的12个TVS二极管中,在直流偏置电压为5 V时,最严重的泄漏量为7 pA。这比最坏情况下的数据表的值要好千百万倍。当然,不同批次的TVS二极管在泄漏方面存在差异,但这至少可以说明预期的泄漏幅度。如果系统经受的温度不会超过85°C,TVS二极管可能是个不错的选择。只要记住,如果您选择的产品不是本文所述的测试产品,请表征其泄漏特性。对一个部件或制造商而言正确的结论,对其他部件或制造商可能并不正确。


测试结果:
采用IEC ESD标准对一系列运算放大器进行了测试。表2显示不同保护方案分别适合保护的组件。虽然ESD标准规定在±8 kV要保证经受三次冲击,但所有这些方案都通过了在±9 kV时经受100次冲击的测试,以确保提供足够的保护余量。


表2. 通过IEC-61000-4-2测试的器件列表及其各自的保护配置


EC标准要求,通过将两个470 kΩ电阻与30 pF电容并联,使ESD源的接地端与放大器的接地端连接在一起。本测试的设置则更为严格,它将ESD源的接地端与放大器的接地端直接相连。这些结果也在IEC接地耦合方案中得到了验证,这可以进一步增强产品的可信赖度。请记住,由于放大器的内部结构存在很大不同,对本列表中的器件适用的数据可能适用,也可能不适用于其他器件。如果使用其他器件或其他保护元件,建议对其进行全面测试。


使用的保护元件:
  • 电阻:Panasonic 0805 ERJ-P6系列
  • 电容:Yageo 0805 100 V C0G/NPO
  • TVS二极管:Bourns CDSOD323-T36SC(双向,36 V,极低漏电流,符合ESD、EFT和浪涌标准)
  • ESD压敏电阻:Bourns MLA系列,0603 26 V

BBonus元件:ESD压敏电阻


TVS二极管性能良好,可以经受无数次冲击。这对于EFT和浪涌保护非常不错,但是,如果您只需要ESD保护,不妨看看ESD压敏电阻,在达到某个电压值之前,它们都用作高压电阻,达到该电压值之后,它们转变为低压电阻,可以分流掉压敏电阻中的电能。


可采用与TVS二极管相同的配置。它们的泄漏更少,成本不到TVS二极管的一半。请注意,其设计并不要求经受数百次冲击,且其电阻会随着每次冲击下降。ESD压敏电阻也在上述产品上进行了测试,当串联电阻值约为TVS二极管所需值的两倍时,该压敏电阻的性能最佳。


这些产品只在ESD标准下进行过测试。EFT的独特之处在于,虽然电压不高(4 kV及以下),其冲击却是爆发式(5 kHz或以上),上升时间较慢(5 ns)。浪涌每次冲击的能量大约是EFT的1000倍,但速度只有波形的1/1000。如果还需要涵盖这些标准,请确保在这些保护元件的数据手册上表明,它们可以应对这个问题。


电路保护概述


虽然看起来事后在电路中添加RC滤波器或TVS二极管并不难,但请注意,本文中提到的所有其他因素会影响系统性能和保护级别。这包括布局、前端使用的器件,以及需要满足的IEC标准。如果您从开始就谨记这一点,就可以避免在系统设计的最后阶段可能出现需要重新设计的紧急状况。
ADI新一代低功耗主动降噪芯片重磅上线啦~
你留“❤”,我送礼
▽▽▽
小编将从视频的点赞粉丝中随机抽取5位幸运儿送出ADI幸运小奖品
查看往期内容↓↓↓
亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论 (0)
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 40浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 30浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 84浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 49浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 114浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 48浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 21浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 83浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 47浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 29浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 41浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦