为您详解连续波CMOS ToF相机系统技术优势!

原创 亚德诺半导体 2021-08-12 11:33
现在,许多机器视觉应用需要高分辨率的3D深度图像来替代或增强标准的2D图成像。这类解决方案依靠3D相机来提供可靠的深度信息以保证安全性,尤其是当机器在极其贴近人附近工作的时候。在具有挑战性的环境中工作时,例如在具有高反射性表面的大空间中和有其他移动物体的环境中工作时,相机还需要提供可靠的深度信息。


目前的许多产品使用低分辨率测距仪类型解决方案来提供深度信息,以增强2D成像。但是,这种方法有很多限制。对于可从更高分辨率3D深度信息获益的应用,CW CMOS ToF相机提供了市场上最高性能的解决方案。表1更详细地说明了由高分辨率CW ToF传感器技术实现的一些系统特性。这些系统特性还能运用于消费者使用场景,如视频背景虚化、面部身份验证和测量应用,以及汽车使用场景,如驾驶员状态监控和自动化舱内配置。


表1.连续波飞行时间系统特性


连续波CMOS飞行时间相机概述



深度相机是指每个像素都会输出相机与场景之间距离的相机。一种测量深度的技术是计算光从相机光源行进到反射表面再返回相机所需的时间。此行程时间通常被称为飞行时间(ToF)。


图1.连续波飞行时间传感器技术概要

ToF相机由多个元件组成(参见图1),包括:

  • 光源,例如垂直腔面发射激光器(VCSEL)或边缘发射激光二极管,其发射近红外域的光。最常用的波长为850 nm和940 nm。光源通常是漫射源(泛光照明),其发出具有一定散度的光束(即照明区或FOI),以照射相机前方的场景。

  • 激光驱动器,其调制光源发射的光的强度。

  • 具有像素阵列的传感器,其从场景中收集返回光线并输出每个像素的值。

  • 镜头,其将返回光线聚焦到传感器阵列上。

  • 带通滤波器,其与镜头共置,用于滤除以光源波长为中心的窄带宽之外的光线。

  • 处理算法,其将传感器输出的原始帧转换为深度图像或点云。


人们可以使用多种方法来调制ToF相机中的光线。一种简单办法是使用连续波调制,例如50%占空比的方波调制。在实践中,激光波形很少是完美的方波,看起来可能更靠近正弦波。对于给定光功率,方形激光波形可产生更好的信噪比,但高频谐波的存在也会导致深度非线性误差。


CW ToF相机通过估算发射信号与返回信号的基波之间的相移 ϕ = 2πftd 来测量这两个信号之间的时间差td。深度可以利用相移 (ϕ) 和光速(c)来估算,公式如下


其中fmod为调制频率。


传感器中的时钟产生电路控制互补像素时钟,而互补像素时钟分别控制两个电荷储存元件(Tap A和Tap B)中的光电荷的累积,以及激光驱动器的激光调制信号。返回调制光的相位可以相对于像素时钟的相位来测量(参见图1右侧)。像素中的Tap A和Tap B之间的差分电荷与返回调制光的强度和返回调制光相对于像素时钟的相位成比例。


利用零中频检测原理,使用像素时钟和激光调制信号之间的多个相对相位进行测量。组合这些测量结果即可确定返回调制光信号中的基波相位。知道该相位即可计算光从光源行进到被观察的物体再返回到传感器像素所花的时间


高调制频率的优点



在实践中,光子散粒噪声、读出电路噪声、多路径干扰等非理想因素会导致相位测量误差。高调制频率可降低这些误差对深度估算的影响。


通过一个简单例子就能轻松理解这一点。假设相位误差为  ϵϕ,那么传感器测得的相位为 。深度误差即为:



因此,深度误差与调制频率fmod成反比。图2以图形方式显示了这一点。


这个简单公式在很大程度上解释了为什么高调制频率的ToF相机与低调制频率的ToF相机相比深度噪声更低且深度误差更小。


图2.相位误差对距离估计的影响

使用高调制频率的一个缺点是相位环绕速度更快,这意味着可以准确测量的距离更短。解决此限制的常见办法是使用多个以不同速率环绕的调制频率。最低调制频率支持准确测量较长距离,但深度误差(噪声、多路径干扰等)也较大,串联使用较高调制频率可降低深度误差。图3显示了一个使用三种不同调制频率的示例方案。最终深度通过不同调制频率的展开相位估计值加权来估算,为较高调制频率分配较大的权重。


图3.多频相位展开

如果为每个频率的权重选择最优值,则深度噪声与系统中选择的调制频率的均方根(rms)成反比。对于恒定深度噪声预算,提高调制频率可以减少积分时间或照明功率。


对性能至关重要的其他系统方面



开发高性能ToF相机时,有许多系统特征需要考虑,这里简要介绍其中的一些特性。


➤图像传感器

图像传感器是ToF相机的关键组件。当系统的平均调制频率提高时,大多数与深度估计相关的非理想因素(如偏置、深度噪声和多路径伪像)的影响会减小。因此,传感器在高调制频率(数百MHz)时须具有高解调对比度(区分Tap A和Tap B之间光电子的能力)。传感器在近红外波长(如850 nm和940 nm)还需要具有高量子效率(QE),从而降低在像素中产生光电子所需的光功率。最后,低读数噪声支持检测较低返回信号(远处或低反射率物体),从而有助于提高相机的动态范围。


➤光照度

激光驱动器以高调制频率调制光源(例如VCSEL)。对于给定光功率,为使像素处的有用信号量最大化,光学波形需要具有快速上升和下降时间及干净的边沿。照明子系统中激光、激光驱动器和PCB布局的组合对于实现这一点至关重要。还需要进行一些标定工作以找到最佳光功率和占空比设置,从而使调制波形的傅立叶变换中的基波幅度最大化。最后,光功率还需要以安全方式传输,激光驱动器和系统层面应内置一些安全机制以确保始终符合第1类眼部安全限值。


➤光学元件

光学元件在ToF相机中发挥着关键作用。ToF相机有一些独特的特性,因此其在光学方面有一些特殊要求。首先,光源的照明区域应与镜头的视场角匹配以获得最佳效率。镜头本身应具有高孔径(低f/#),以获得更好的光收集效率,这一点也很重要。大孔径可能导致需要权衡其他因素,如暗角、浅景深和镜头设计复杂度等。低主射线角的镜头设计也有助于减少带通滤波器带宽,从而改善环境光抑制,提高户外性能。光学子系统还应针对所需工作波长进行优化(如防反射涂层、带通滤波器设计、镜头设计),以使吞吐效率最大而杂散光最小。还有许多机械要求,以确保光学对准在最终应用的期望容差范围内。


➤电源管理

电源管理在高性能3D ToF相机模块设计中同样至关重要。激光调制和像素调制产生短的高峰值电流突发脉冲,这给电源管理解决方案带来了一些约束。传感器集成电路(IC)的一些特性可以帮助降低成像器的峰值功耗。在系统层面还可以应用电源管理技术来帮助降低对电源的要求(例如电池或USB)。ToF成像器的主要模拟电源通常需要一个具有良好瞬态响应和低噪声的稳压器。


图4.光学系统架构


➤深度处理算法

最后,系统级设计的另一重大部分是深度处理算法。ToF图像传感器输出原始像素数据,需要从这些数据中提取相位信息。该操作需要多个步骤,包括噪声滤波和相位展开。相位展开模块的输出是激光器发出的光行进到场景再返回到像素的距离测量结果,常被称为范围或径向距离。


径向距离一般被转换为点云信息,代表特定像素的实际坐标(X、Y、Z)信息。通常,最终应用仅使用Z图像映射(景深映射),而不是全部点云。将径向距离转换为点云需要了解镜头内在特性和失真参数。这些参数是在相机模块的几何校准期间估算。深度处理算法还能输出其他信息,例如有源亮度图像(返回激光信号的幅度)、无源2D IR图像和置信度,这些信息都可以在最终应用中使用。深度处理可以在相机模块本身中进行,或系统中其他地方的主机处理器中进行。


本文涉及的不同系统级组件概览如表2所示。这些议题将在未来的文章中详细讨论。


表2.3D飞行时间相机的系统级组件


结论



连续波飞行时间相机是一种强大的解决方案,可为需要高质量3D信息的应用提供高深度精度。为确保实现最佳性能水平,有许多因素需要考虑。调制频率、解调对比度、量子效率和读数噪声等因素决定了图像传感器的性能。其他因素是系统级考虑因素,包括照明子系统、光学设计、电源管理和深度处理算法。所有这些系统级组件对于实现最高精度3D ToF相机系统至关重要。


ADI新一代低功耗主动降噪芯片重磅上线啦~
你留“❤”,我送礼
▽▽▽
小编将从视频的点赞粉丝中随机抽取5位幸运儿送出ADI幸运小奖品
查看往期内容↓↓↓
亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 107浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 47浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 93浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 58浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 79浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 43浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 54浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 55浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 65浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 55浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 53浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 84浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦