传感器融合和数据压缩:自动驾驶关键技术!

原创 SSDFans 2021-08-12 07:45


点击蓝字
关注我们



随着自动驾驶的普及,互联车辆产生的数据成为汽车行业的驱动因素和约束因素。虽然我们不能低估收集信息的重要性,但目前一辆车的信息量接近每小时25GB。而随着自主性水平的提高,互联汽车之间交换的数据千兆字节数将进一步增加。像这样大量的数据造成了处理问题。为了解决这个问题,架构和数据都必须变得更加复杂。这就是多传感器融合和数据压缩在使整个自治系统工作中发挥重要作用的地方。


快速、无缝的数据处理对于追求更高水平自动驾驶的汽车制造商来说是最关键和最具挑战性的任务。Intellias是许多原始设备制造商和一级公司值得信赖的合作伙伴,致力于研究能够最有效地处理数据流的最佳硬件和软件解决方案。在本文中,我们将分享我们的数据专业知识,以解开信息如何在自动驾驶汽车中传播的困惑,以及使用人工智能和深度学习优化数据的方法。


在本文中,您将了解:


(1)用于机器学习的优化数据集

(2)数据压缩方法

(3)人工智能在传感器融合和数据压缩中的应用

(4)基于人工智能的自动驾驶汽车多传感器数据融合

(5)数据压缩的深度学习方法

(6)如何将压缩数据发送到云


为机器学习创建优化的数据集:


工作原理:从多个传感器收集原始数据后,必须对其进行充分处理。请记住,自治级别越高,需要的传感器就越多。处理包括几个阶段:

数据清理:通过应用各种基于规则或模型的技术,发现不完整或不准确的输入,并纠正原始传感器数据中的错误

数据融合:将来自不同来源的数据以及相关数据库的信息结合起来,以确保高水平的准确性


数据压缩:通过减少冗余来减少存储空间和传输的数据量,即删除重复的或宝贵的数据;使用不同的数据表示和近似技术,即传输更少的数据而不丢失数据,传输紧凑的模型而不是原始数据


要准确地确定一辆自动驾驶汽车在每一个特定时刻所需要的所有必要和足够的数据是相当困难的。特定的先决条件有助于车辆的AI与传感器协同工作,逐渐了解使用什么数据以及何时使用。但是,前提条件不能实时更新。对于机器学习引擎来说,识别关键任务操作所需的数据并进行局部分析是非常重要的。因此,要运行数据处理,AI必须:


(1)识别所有格式的数据(来自所有传感器)

(2)全方位分析中传感器融合算法的实现

(3)识别关键任务操作的数据并在本地进行分析

(4)压缩非关键数据

(5)当不太重要的通信可用时,计划将压缩数据上载到云

(6)当需要分析非关键数据时,从云中调用遗留数据


要像这样运行处理过程,自动驾驶汽车必须拥有强大而昂贵的机器学习引擎。但要进入大众市场,汽车制造商必须寻找优化数据和降低汽车价格的方法。为了实现这一目标,需要先进的数据压缩和数据融合技术,以及车辆和云后端之间高效的双向通信。


利用人工智能进行传感器融合和数据压缩


由于基于人工智能的自动驾驶汽车有多个传感器——摄像头、声纳、激光雷达等,因此必须采用融合和压缩连接汽车数据阵列的技术。这是一个恶性循环:一辆自动驾驶汽车要实现无缝运行,就需要大量的输入,而这需要庞大的计算处理能力、更多的处理器,以及汽车内部更多的存储空间。它增加了成本、重量和车辆的人工智能系统的复杂性。如何解决这个问题?


融合来自多个物联网设备的数据后,您将收到大量信息,这些信息被推送到系统中,供人工智能进行分析。为了处理这些数据量,使用了各种压缩技术。在这些技术的帮助下,信息经过编码和压缩,然后解码和解压缩以供使用。有所谓的无损压缩和有损压缩方法:在第一种情况下,您可以恢复原来保存的所有信息,而在第二种情况下,一些数据丢失。


无损的:


有损的:


为了保证通信带宽和处理能力,融合中心必须对数据进行压缩。


基于人工智能的自动驾驶汽车的多传感器数据融合


让我们回顾一下传感器融合及其重要性。传感器融合的前提是合并来自不同来源的数据,以形成准确和全面的感知。传感器融合对于车辆的人工智能做出智能和准确的决策至关重要。


自动驾驶汽车的传感器融合


资料来源:Towards Data Science


多传感器数据融合既可以是来自相似传感器的同质数据,也可以是来自不同类型传感器的基于到达时间的异质数据。多传感器数据融合也有不同的层次:


信号电平:在这个电平上,融合产生一个质量更好的新信号

对象级:基于对象的融合生成融合图像,通过聚类确定每个信号数据类型

特征级:在这个级别上的融合需要识别来自不同数据源的对象

决策层:这个层次上的融合需要多个算法的结果的组合


目前,汽车制造商正在使用特征级和决策级多传感器数据融合。然而,这还不足以达到更高层次的自治。为了获得更广泛的环境感知和更好的上下文输入,必须采用基于信号的融合技术。


这引发了第二个挑战:人工智能必须完成的处理越复杂,它需要的能力就越大。自动驾驶汽车需要更多的处理器和内存,这会增加成本和更大的能源消耗。更关键的是,融合和解释来自如此多不同传感器的数据将需要更多的时间,人工智能的反应在路上是无法改变的。这就是为什么数据压缩对自动驾驶车辆的重要性不亚于融合。


调查数据压缩方法


传感器产生的数据类型和数量各不相同。看看来自Lucid Motors的Stephen Heinrich的估计,差异可能非常大:




由于摄像机占用了数据交换通道的大部分,因此它是压缩的首选。如前所述,视频和激光雷达数据压缩可以是无损和有损的。让我们详细说明一下Intellias如何利用深度学习方法进行数据压缩。


无损压缩方法解决了两个关键问题:


1.将真实数据分布近似于模型。

2.开发一种实用的压缩算法称为熵编码方案。


我们可以从ImageNet中100幅图像的压缩比来近似无损视频编码的预期效率:



对于LIDAR,数据压缩的方法有:

ilLASCompression

LASZip

LZMA或Lempel-Ziv-Markov链算法

压缩POINT10


为了改进数据压缩,我们实现了深度学习技术。最近的BB-ANS方法利用了潜在变量模型。这个模型定义了未观察到的随机变量,用来表示原始数据的分布。例如,在图像的情况下,像素的分布可能依赖于边缘和纹理的位置,这是潜在变量。


对于有损压缩方法,采用无监督学习方法进行图像建模。我们使用变分自动编码器(VAEs)、PixelCNN和PixelRNN模型来学习潜在图像表示。在这种情况下,交换一个较小的编码向量,然后解码。


为了将有价值和快速变化的信息从不那么有价值和更静态的信息中分离出来,采用了一种有损和无损方法的组合。当我们想要优化数据时,我们使用一种无损的方法来传输和压缩大量的高度动态和关键的信息。较不精确但更紧凑的数据传输将应用于描述静态环境或非关键背景的图像。


反过来,背景为应用深度学习模型进行目标检测和跟踪开辟了可能性。在这种情况下,感兴趣的对象以更高的质量和速度转移,而其他所有东西都保持较低的质量。


其他用于传感器数据压缩的深度学习方法包括注意力模型,它用于减少数据规模并指出最有价值的信息,以及Golomb-Rice编码,一种基于熵、波动性/持久性、多样性/均匀性、初始数据规模等的数据压缩方法。这些方法被认为是有损压缩,通常指的是多维尺度。它们对于数字多维数据是有效的。


尽管即使是简单的数据压缩方法也可以显著节省带宽,但高级ML增强的维数缩减更具前景。通过这种缩减,连接车辆之间传输的数据量减少了一半。此外,当编码或压缩信息被发送到云端时,传输数据的大小也会减少两倍。


将压缩数据发送到云


非关键数据,即长响应时间参考数据,未经本地处理,被压缩并发送到云。用于存储数据的云平台必须能够承载生成的数据阵列。当涉及到自动驾驶汽车时,计算成本很少被提及,但它们应该被考虑在内:例如,通用汽车(GM)斥资2.88亿美元新建了两个存储和处理汽车数据的仓库。


这正是谷歌云数据融合解决方案等产品派上用场的地方。在此解决方案的帮助下,来自不同来源的数据可以融合到中央数据仓库中。融合云允许构建数据管道并对其进行转换,而无需编写任何代码。


云数据融合解决方案


来源:Fourcast


Intellias汽车专家将该解决方案作为数据分析的骨干,以及大数据应用的开发和运行。


总的来说,传感器融合和数据压缩是汽车行业走向更高水平自主的关键课题。为了达到第三级甚至更高的水平,自动驾驶汽车必须使用大量的传感器,以及它们产生的大量数据。为了实现这一点,数据流程应从生成阶段到存储阶段和非关键洞察的货币化阶段进行优化。像Intellias这样的高科技公司利用深度学习技术改进数据压缩,并致力于找出最有效的多传感器融合方法。这一切都是为了帮助原始设备制造商降低自动驾驶汽车的价格,从而使其更容易进入大众市场。


原文链接:


https://www.intellias.com/the-way-of-data-how-sensor-fusion-and-data-compression-empower-autonomous-driving/



高端微信群介绍

创业投资群


AI、IOT、芯片创始人、投资人、分析师、券商

闪存群


覆盖5000多位全球华人闪存、存储芯片精英

云计算群


全闪存、软件定义存储SDS、超融合等公有云和私有云讨论

AI芯片群


讨论AI芯片和GPU、FPGA、CPU异构计算

5G群


物联网、5G芯片讨论

第三代半导体群

氮化镓、碳化硅等化合物半导体讨论

储芯片群

DRAM、NAND、3D XPoint等各类存储介质和主控讨论

汽车电子群

MCU、电源、传感器等汽车电子讨论

光电器件群

光通信、激光器、ToF、AR、VCSEL等光电器件讨论

渠道群

存储和芯片产品报价、行情、渠道、供应链




< 长按识别二维码添加好友 >

加入上述群聊




长按并关注

带你走进万物存储、万物智能、

万物互联信息革命新时代

微信号:SSDFans
SSDFans AI+IOT+闪存,万物存储、万物智能、万物互联的闪存2.0时代即将到来,你,准备好了吗?
评论
  • 在海洋监测领域,基于无人艇能够实现高效、实时、自动化的海洋数据采集,从而为海洋环境保护、资源开发等提供有力支持。其中,无人艇的控制算法训练往往需要大量高质量的数据支持。然而,海洋数据采集也面临数据噪声和误差、数据融合与协同和复杂海洋环境适应等诸多挑战,制约着无人艇技术的发展。针对这些挑战,我们探索并推出一套基于多传感器融合的海洋数据采集系统,能够高效地采集和处理海洋环境中的多维度数据,为无人艇的自主航行和控制算法训练提供高质量的数据支持。一、方案架构无人艇要在复杂海上环境中实现自主导航,尤其是完
    康谋 2025-03-13 09:53 44浏览
  •        随着人工智能算力集群的爆发式增长,以及5.5G/6G通信技术的演进,网络数据传输速率的需求正以每年30%的速度递增。万兆以太网(10G Base-T)作为支撑下一代数据中心、高端交换机的核心组件,其性能直接决定了网络设备的稳定性与效率。然而,万兆网络变压器的技术门槛极高:回波损耗需低于-20dB(比千兆产品严格30%),耐压值需突破1500V(传统产品仅为1000V),且需在高频信号下抑制电磁干扰。全球仅有6家企业具备规模化量产能力,而美信科
    中科领创 2025-03-13 11:24 40浏览
  • 一、行业背景与用户需求随着健康消费升级,智能眼部按摩仪逐渐成为缓解眼疲劳、改善睡眠的热门产品。用户对这类设备的需求不再局限于基础按摩功能,而是追求更智能化、人性化的体验,例如:语音交互:实时反馈按摩模式、操作提示、安全提醒。环境感知:通过传感器检测佩戴状态、温度、压力等,提升安全性与舒适度。低功耗长续航:适应便携场景,延长设备使用时间。高性价比方案:在控制成本的同时实现功能多样化。针对这些需求,WTV380-8S语音芯片凭借其高性能、多传感器扩展能力及超高性价比,成为眼部按摩仪智能化升级的理想选
    广州唯创电子 2025-03-13 09:26 33浏览
  • 文/杜杰编辑/cc孙聪颖‍主打影像功能的小米15 Ultra手机,成为2025开年的第一款旗舰机型。从发布节奏上来看,小米历代Ultra机型,几乎都选择在开年发布,远远早于其他厂商秋季主力机型的发布时间。这毫无疑问会掀起“Ultra旗舰大战”,今年影像手机将再次被卷上新高度。无意臆断小米是否有意“领跑”一场“军备竞赛”,但各种复杂的情绪难以掩盖。岁岁年年机不同,但将2-3年内记忆中那些关于旗舰机的发布会拼凑起来,会发现,包括小米在内,旗舰机的革新点,除了摄影参数的不同,似乎没什么明显变化。贵为旗
    华尔街科技眼 2025-03-13 12:30 60浏览
  • DeepSeek自成立之初就散发着大胆创新的气息。明明核心开发团队只有一百多人,却能以惊人的效率实现许多大厂望尘莫及的技术成果,原因不仅在于资金或硬件,而是在于扁平架构携手塑造的蜂窝创新生态。创办人梁文锋多次强调,与其与大厂竞争一时的人才风潮,不如全力培养自家的优质员工,形成不可替代的内部生态。正因这样,他对DeepSeek内部人才体系有着一套别具一格的见解。他十分重视中式教育价值,因而DeepSeek团队几乎清一色都是中国式学霸。许多人来自北大清华,或者在各种数据比赛中多次获奖,可谓百里挑一。
    优思学院 2025-03-13 12:15 47浏览
  • 文/Leon编辑/cc孙聪颖作为全球AI领域的黑马,DeepSeek成功搅乱了中国AI大模型市场的格局。科技大厂们选择合作,接入其模型疯抢用户;而AI独角兽们则陷入两难境地,上演了“Do Or Die”的抉择。其中,有着“大模型六小虎”之称的六家AI独角兽公司(智谱AI、百川智能、月之暗面、MiniMax、阶跃星辰及零一万物),纷纷开始转型:2025年伊始,李开复的零一万物宣布转型,不再追逐超大模型,而是聚焦AI商业化应用;紧接着,消息称百川智能放弃B端金融市场,聚焦AI医疗;月之暗面开始削减K
    华尔街科技眼 2025-03-12 17:37 145浏览
  • 2025年,科技浪潮汹涌澎湃的当下,智能数字化变革正进行得如火如荼,从去年二季度开始,触觉智能RK3562核心板上市以来,受到了火爆的关注,上百家客户选用了此方案,也获得了众多的好评与认可,为客户的降本增效提供了广阔的空间。随着原厂的更新,功能也迎来了一波重大的更新,无论是商业级(RK3562)还是工业级(RK3562J),都可支持NPU和2×CAN,不再二选一。我们触觉智能做了一个艰难又大胆的决定,为大家带来两大重磅福利,请继续往下看~福利一:RK3562核心板149元特惠再续,支持2×CAN
    Industio_触觉智能 2025-03-12 14:45 26浏览
  • 曾经听过一个“隐形经理”的故事:有家公司,新人进来后,会惊讶地发现老板几乎从不在办公室。可大家依旧各司其职,还能在关键时刻自发协作,把项目完成得滴水不漏。新员工起初以为老板是“放羊式”管理,结果去茶水间和老员工聊过才发现,这位看似“隐形”的管理者其实“无处不在”,他提前铺好了企业文化、制度和激励机制,让一切运行自如。我的观点很简单:管理者的最高境界就是——“无为而治”。也就是说,你的存在感不需要每天都凸显,但你的思路、愿景、机制早已渗透到组织血液里。为什么呢?因为真正高明的管理,不在于事必躬亲,
    优思学院 2025-03-12 18:24 81浏览
  • 前言在快速迭代的科技浪潮中,汽车电子技术的飞速发展不仅重塑了行业的面貌,也对测试工具提出了更高的挑战与要求。作为汽车电子测试领域的先锋,TPT软件始终致力于为用户提供高效、精准、可靠的测试解决方案。新思科技出品的TPT软件迎来了又一次重大更新,最新版本TPT 2024.12将进一步满足汽车行业日益增长的测试需求,推动汽车电子技术的持续革新。基于当前汽车客户的实际需求与痛点,结合最新的技术趋势,对TPT软件进行了全面的优化与升级。从模型故障注入测试到服务器函数替代C代码函数,从更准确的需求链接到P
    北汇信息 2025-03-13 14:43 40浏览
  • 一、行业背景与需求痛点智能电子指纹锁作为智能家居的核心入口,近年来市场规模持续增长,用户对产品的功能性、安全性和设计紧凑性提出更高要求:极致空间利用率:锁体内部PCB空间有限,需高度集成化设计。语音交互需求:操作引导(如指纹识别状态、低电量提醒)、安全告警(防撬、试错报警)等语音反馈。智能化扩展能力:集成传感器以增强安全性(如温度监测、防撬检测)和用户体验。成本与可靠性平衡:在复杂环境下确保低功耗、高稳定性,同时控制硬件成本。WTV380-P(QFN32)语音芯片凭借4mm×4mm超小封装、多传
    广州唯创电子 2025-03-13 09:24 41浏览
  • 在追求更快、更稳的无线通信路上,传统射频架构深陷带宽-功耗-成本的“不可能三角”:带宽每翻倍,系统复杂度与功耗增幅远超线性增长。传统方案通过“分立式功放+多级变频链路+JESD204B 接口”的组合试图平衡性能与成本,却难以满足实时性严苛的超大规模 MIMO 通信等场景需求。在此背景下,AXW49 射频开发板以“直采+异构”重构射频范式:基于 AMD Zynq UltraScale+™ RFSoC Gen3XCZU49DR 芯片的 16 通道 14 位 2.5GSPS ADC 与 16
    ALINX 2025-03-13 09:27 32浏览
  • 北京时间3月11日,国内领先的二手消费电子产品交易和服务平台万物新生(爱回收)集团(纽交所股票代码:RERE)发布2024财年第四季度和全年业绩报告。财报显示,2024年第四季度万物新生集团总收入48.5亿元,超出业绩指引,同比增长25.2%。单季non-GAAP经营利润1.3亿元(non-GAAP口径,即经调整口径,均不含员工股权激励费用、无形资产摊销及因收购产生的递延成本,下同),并汇报创历史新高的GAAP净利润7742万元,同比增长近27倍。总览全年,万物新生总收入同比增长25.9%达到1
    华尔街科技眼 2025-03-13 12:23 47浏览
  • 引言汽车行业正经历一场巨变。随着电动汽车、高级驾驶辅助系统(ADAS)和自动驾驶技术的普及,电子元件面临的要求从未如此严格。在这些复杂系统的核心,存在着一个看似简单却至关重要的元件——精密电阻。贞光科技代理品牌光颉科技的电阻选型过程,特别是在精度要求高达 0.01% 的薄膜和厚膜技术之间的选择,已成为全球汽车工程师的关键决策点。当几毫欧姆的差异可能影响传感器的灵敏度或控制系统的精确性时,选择正确的电阻不仅仅是满足规格的问题——它关系到车辆在极端条件下的安全性、可靠性和性能。在这份全面指南中,我们
    贞光科技 2025-03-12 17:25 92浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦