降压型开关电源教程

凡亿PCB 2021-08-11 08:00

【点击上方公众号】

 免费领取学习工具大合集


今天我们一起学习降压型开关电源。

为什么需要开关电源

在之前的 线性稳压器教程 中,我们学习了 L7805 等线性稳压器的使用。它们使用起来很简单,但是效率低下。

例如,如果您尝试用 26 伏电压为线性稳压器供电,并且输出电压为 5 伏 电流为 3 安培,则最终会产生 63 瓦的热量。如此巨大的能量浪费是不可接受的。

对于大功率项目,你希望使用所谓的开关电源。有各种不同类型的开关电源,可以让你将一种电压转换为另一种电压。

本文主要讨论降压型(Buck or Step-down)开关电源。它是一种可以将较高电压降低到较低电压的电源。

原理

让我们先从一个简单的电路开始。电路由一个 10 伏的直流电源串联一个开关组成。

开关是什么并不重要。它可以是双极性晶体管,MOS 管,甚至可以是疯狂推动机械开关的疯子。


出于效率原因,开关应该使用场效应(MOS)管。但现在我们在电路中还是用通用开关符号。接下来让我们用占空比为 50% 的脉冲宽度调制(PWM)信号来控制开关的断开和闭合。

这会给我们输出一个一个占空比为 50% 的方波,一半时间为 10 伏,一半时间为 0 伏,这样平均电压就是 5 伏。

现在让我们添加一个 LC 低通滤波器。电感抵抗电流的突变,电容抵抗电压的突变。综合效果是我们的 LC 低通滤波器抹平了方波,我们在输出上获得了 5 伏的相对稳定的直流电。

但是上面这个电路有个问题。假设开关已闭合,我们的电源正在输送一些电流。这意味着电流正流过这个电感器。

现在让我们断开开关。由于电感中的电流不能立即改变,这意味开关断开的一小段时间内仍然有电流流过电感。

但是电感左侧没有接任何器件,所以在这里积累大量带负电荷的电子(电子的流动的方向是和传统电流方向相反的)。从而产生一个巨大的负电压毛刺。

这种电压毛刺可以达到数百甚至数千伏。


如此巨大的负电压毛刺足以烧毁连接在此处的任何开关。如果您想了解有关这种现象的更多信息,请查看我另一篇文章:电感毛刺。在那篇文章中,提到了一个解决办法,就是添加一个二极管。二极管就位后,现在无论何时断开开关,电流都可以在一个完整的路径中流动,并且开关后的电压几乎不会低于零,因为二极管的存在,电感左侧电压最多比接地低 0.7 伏(二极管压降电压),肖特基二极管会更低。

下图是经典的降压型开关电源电路,你可以使用这个基本电路以比线性稳压器(Linear Voltage Regulator)更有效的方式将高电压直流电降低到电压较低的直流电。

使用 Arduino 搭建

我们使用 Arduino 搭建一个降压型直流电源(Buck Converter)。这个电路仅用来学习降压型开关电源的作用,不具有实际用途。Arduino 可以输出方波(PWM), 我们可以利用它输出的方波作为控制信号,在面包上搭建一个简单的降压型开关电源。

无反馈

我们使用 P沟道场效应管 IRF9540 来开关主电源,这里我使用可调电源输出的 12 伏电压。因为 Arduino 的驱动能力不足,不足以直接驱动 IRF9540, 我们使用一个 NPN 型BJT 晶体管 S8050 来驱动 IRF9540。我们编程让 Arduino 输出 31 k 赫兹的控制方波。旋转电位器可以改变输出方波的占空比。这样,当 Arduino D3 脚输出高电平时,三接管导通,拉低 N 沟道场管的门级(G),场管导通;当 D3 输出低电平时,三极管断开,场管门级为高电平,场管关断。

电位器一个引脚接在 Arduino 的 5V 引脚上,一个引脚接地,这样电位器中间引脚可以输出 0~5伏电压。

A0 引脚: 接可调电位器的中间引脚。用于调节方波的占空比。

D3 引脚:输出 31k 赫兹的控制方波,用于控制开关 IRF9540 的关断。


/*
* 这是用 arduino 制作的降压型开关电源的示例代码。
* 我们使用 Aruino Uno. Nano 也是可以的。
* D3 引脚输出控制方波
* No feedback is connected here.
*/

int potentiometer = A0; // 接可调电阻中间引脚
int PWM = 3;

void setup() {
pinMode(potentiometer, INPUT);
pinMode(PWM, OUTPUT);
// 引脚3和11, 输出PWM 方波 频率:31372.55 Hz
TCCR2B = TCCR2B & B11111000 | B00000001;
}

void loop() {
float voltage = analogRead(potentiometer);
int VALUE = map(voltage, 0, 1024, 0, 254);
analogWrite(PWM, VALUE);
}

我们在面包板上组装好电路,使用一个 12 伏的灯泡作为负载。示波器探头 CH1 接在 Arduino 输出的控制方波上,CH2 接在电压输出端。调节电位器可以调节输出电压,可以看到灯泡也随着变亮。

这个电路可以在负载不变的情况下维持稳定的电压。但是如果负载变了,输出电流就会改变,进而导致输出电压改变。如果想要在负载改变的情况下,维持电压不变,需要有一个反馈系统,该系统将监测输出电压,如果输出电压变低,则可以增加输出方波的占空比,如果输出电压变高,则可以减小输出电压的占空比,进而维持输出电压不变。

有反馈

我们给我们的开关电源加一个反馈系统,以实现在负载改变的情况下,维持输出电压不变。我们使用 Arduino 监控输出电压,如果低了,我们就增加方波占空比,进而拉高输出电压;如果输出电压高了,我们减小占空比,进而减小输出电压。因为电路输出电压的范围为 0~12 伏,而 Arduino ADC 的最大输入电压为 5 伏,不能直接检测输出电压。我们需要将输出电压降到 5 伏以下,我们使用一个简单的电阻分压电路实现。

带反馈的完整的电路如下:

A0 引脚: 接可调电位器的中间引脚。用于调节方波的占空比。

A1 引脚:接反馈电阻,用于监控输出电压。

D3 引脚:输出 31k 赫兹的控制方波,用于控制开关 IRF9540 的关断。

带反馈的降压型开关电源代码如下:


/*
* 这是用 arduino 制作的降压型开关电源的示例代码。
* 我们使用 Aruino Uno. 用 Nano 也是可以的。
* A0 引脚: 接可调电位器的中间引脚。用于调节方波的占空比。
* A1 引脚:接反馈电阻。
* D3 引脚:输出 31k 赫兹的控制方波。
*/

int potentiometer = A0; // 接可调电阻中间引脚
int feedback = A1;
int PWM = 3;
int VALUE = 0;

void setup() {
pinMode(potentiometer, INPUT);
pinMode(feedback, INPUT);
pinMode(PWM, OUTPUT);
// 引脚3和11, 输出PWM 方波 频率:31372.55 Hz
TCCR2B = TCCR2B & B11111000 | B00000001;
}

void loop() {
float voltage = analogRead(potentiometer);
float output = analogRead(feedback);

if (output > voltage) { // 输出电压大了,减小占空比
VALUE = VALUE - 1;
VALUE = constrain(VALUE, 1, 254);
} else if (output < voltage) {// 输出电压小了,增大占空比
VALUE = VALUE + 1;
VALUE = constrain(VALUE, 1, 254);
}

analogWrite(PWM, VALUE);
}

一站式解决方案

上面的降压型开关电源,罗里吧嗦,又是方波,又是反馈,挺麻烦的。市面上有多种降压型开关电源芯片,提供一站式解决方案。。比如 LM2576T-ADJ 这款芯片,使用反馈电阻可以在负载变化的情况下,保证输出电压不变。


输入可以在 40 伏的范围内。不要施加更高的电压,否则可能会烧毁 LM2576T-ADJ 组件。在这种情况下,我们不需要外部开关,因为 LM2576T-ADJ 里面已经有了。将电压反馈引脚连接到输出分压器后,LM2576T-ADJ 将根据输出电压的高低改变输出控制方波的占空比以保持输出电压恒定。在这种情况下,使用肖特基二极管,因为它具有低正向压降电压。

焊起来

像这种大电流,而且有的器件要求尽量靠近芯片引脚的东西,我们就不要在面包板上搞了。我们使用洞洞板搞。

首先在把 LM2576T-ADJ 焊接在洞洞板的中间,在它周围留下大量的空间,以安装其他器件。

输入端的滤波电解电容焊接在芯片的一两厘米内。

同样的方法焊接输出端的二极管、电感,保持元件连线尽可能短:

再焊上输出滤波电容:

当焊接反馈电阻时,尽量使返回芯片的导线尽可能短。

电路板底部的布局比顶部更重要。注意我的地线是一条直线,那两个蓝色的是 100 nF 滤波电容,输入输出各一个:

最后的效果:

跑起来

一切准备就绪就绪。我将用 10 伏电压作为我的开关电源的输入电压。我将使用我的可调节电子负载来查看它如何提供不同大小的电流。

如果你在家中这样做,你可以使用 5欧姆 10瓦的功率电阻器作为负载。

首先,让我们检查一下输出电压是我们想要的。他是完美的 5 伏直流电!

现在,让我们来看看电路中的这个节点,它被称为开关节点, 也就是 LM2576-ADJ 的 2脚:


您可以看到我们熟悉的 0 到 10伏方波,开关频率为 50.65 kHz。但是你可以看到占空比为 59.5 %,而不是理论上的 50%,此时的负载电流为 1 安培。

如果我将负载增加到 2 安培,占空比增加到 63 %。在3 安培时, 功率损失更大,控制器必须将占空比更改为 67% 才能够维持稳定的 5 伏输出:

还记得我之前说过我们得到了一个完美的 5 伏直流电吗?那并不是真实的情况。让我们将示波器的耦合更改为交流耦合并放大波形。可以看到在输出上有一个小的交流分量,因为我们的低通滤波器并不完美。我们称其为电源的输出纹波。在 1 安培负载下,我们有大约 10 毫伏的纹波和噪声。

如果我将负载电流增加到 3 安培,纹波变得更加嘈杂,达到了 16.7 mV:

如果我将输入电压增加到 26 伏,纹波波形会变大,达到了 33 mV。

理想情况下,我们希望这种纹波尽可能小。对于大多数应用,低于 100 毫伏的峰峰值就可以了。但一般来说,您不想用开关电源为无线电接收器等敏感电路供电。

现在让我们计算我们制作的的这个电源的效率。并将其与线性稳压器进行比较。


从 26 伏的输入,我的台式电源向直流转换器提供 0.6889 安培。

我的万用表测量输出为 4.905 伏.

我将负载正好设置为 3 安培。如果你在家中使用电阻器作为负载进行操作,请确保使用万用表准确测量输出电流。

将数据带入公式计算,我们发现我们的电源效率为 82%,非常好!这就是人们为什么通常将开关电源用于高于 1 安培的电流。

本文编辑转载自飞鱼学堂公众号,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。版权归原作者所有,如涉及作品内容、版权和其它问题,请在30日内与本公众号联系微信(kunyi346416,我们将在第一时间删除内容!
 点击下方链接关注推荐公众号 

技术文章凡亿教育打造“最落地”的校企合作,《全流程大学生电子实战技能培训》系统“传承”课程正式发布!
【技术文章】三张电路图,教你看懂阻容降压的工作原理
【干货合集】收藏 | PCB生产工艺流程大合集
干货资料】104条PCB设计技巧问答|画板无忧!
【技术干货】PADS学这个就够?无模命令整理大全
●【资料分享】计划招生200名学员,免费学高速PCB


觉得内容不错的话,点个在看呗

凡亿PCB 分享高速PCB设计、硬件设计、信号仿真、天线射频技术,提供技术交流、资料下载、综合提升电子应用开发能力!创立“凡亿教育”,致力做电子工程师的梦工厂,旨在赋能大学生、初中级电子工程师,倾力打造电子设计精品教育,逐步发展成系统
评论
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 81浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 76浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 49浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 74浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 77浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 68浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 87浏览
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 64浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 47浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 101浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦