战略研究丨光纤通信技术发展现状与展望

云脑智库 2021-08-09 00:00


来源 | 中国工程院院刊

智库 | 云脑智库(CloudBrain-TT)

云圈 | “云脑智库微信群”,请加微信:15881101905,备注研究方向

本文选自中国工程院院刊《中国工程科学》2020年第3期

作者:谈仲纬,吕超

来源:光纤通信技术发展现状与展望[J].中国工程科学,2020,22(3):100-107.



编者按


作为激光技术的重要应用,光纤通信技术是搭建现代通信网络的重要桥梁。随着物联网、大数据、云计算、虚拟现实和人工智能等新兴技术的涌现,信息传递需求与日俱增,这对光纤通信技术的发展提出了更高要求。


近期,中国工程院院刊《中国工程科学》刊发《光纤通信技术发展现状与展望》一文,在系统梳理光纤通信技术国内外发展现状的基础上,分析了在具体场景应用中面临的问题与挑战,研判了未来光纤通信技术发展的方向。文章指出,激光通信技术在超大容量光纤通信系统中面临的挑战可从发射功率增加、光放大器带宽增加、低传输损耗光纤以及空分复用相关技术研究等方面入手探讨解决思路。同时,结合现实应用情况,文章对面向其他场景的光纤通信系统成本困境的解决进行了思考。总体而言,光纤通信技术将朝着超大容量、智能化、集成化的方向不断演进,未来期望可以实现智能化网络参数监测和超长距离、超大容量信息传输,并且随着集成技术和光通信器件的不断进步,必将推动整个光纤通信行业的高性能、低成本发展。




一、前言


光纤通信技术自出现以来带来了科技和社会领域的重大变革。作为激光技术的重要应用,以光纤通信技术为主要代表的激光信息技术搭建了现代通信网络的框架,成为信息传递的重要组成部分。光纤通信技术是当前互联网世界的重要承载力量,同时也是信息时代的核心技术之一。众所周知,光纤通信技术的基本要素是光源、光纤和光电探测器(PD)。其中,应用最为广泛的光源是激光器;光纤的能量传输效率极佳,传输损耗是波导电磁传输系统中最小的;PD是光纤通信接收端的关键组成部分。


当前各类信息技术都需依靠通信网络来传递信息,光纤通信技术可以连接至各类通信网络,构成信息传输过程中的大动脉,并在信息传输中发挥重要作用。现代通信网络架构(见图1)主要包括:核心网、城域网、接入网、蜂窝网、局域网、数据中心网络与卫星网络等。不同网络之间的连接都可由光纤通信技术完成,如在移动蜂窝网中,基站连接到城域网、核心网的部分也都是由光纤通信构成的。而在数据中心网络中,光互连是当前最广泛应用的一种方式,即采用光纤通信的方式实现数据中心内与数据中心间的信息传递。由此可见,光纤通信技术在现在的通信网络系统中不仅发挥着主干道的作用,还充当了诸多关键的支线道路的作用。可以说,由光纤通信技术构筑的光纤传送网是其他业务网络的基础承载网络


图1 现代通信网络架构


随着各种新兴技术如物联网、大数据、虚拟现实、人工智能(AI)、第五代移动通信(5G)等技术的不断涌现,对信息交流与传递提出了更高的需求。据思科公司(Cisco)2019 年发布的研究数据显示(见图2),全球年度IP流量将由2017年的1.5 ZB(1 ZB=1021 B)增长为 2022年的4.8 ZB,复合年增长率为26%。面对高流量的增长趋势,光纤通信作为通信网中最骨干的部分,承受着巨大的升级压力,高速、大容量的光纤通信系统及网络将是光纤通信技术的主流发展方向


图2 2017—2022年全球年度网络IP流量走势


二、光纤通信技术的发展历程与研究现状

 

(一)光纤通信技术的发展历程


随着1958年亚瑟·肖洛与查尔斯·汤斯揭示激光器工作原理之后,1960年第一台红宝石激光器研制成功。接着,1970年第一个能在室温下连续工作的AlGaAs半导体激光器研制成功,并在1977年实现半导体激光器在实用环境中可连续工作几万小时以上。至此,激光器已具备应用于商用光纤通信的前提。在激光器发明之初,发明者已意识到其在通信领域的重要潜在应用。然而,激光通信技术存在两个明显的短板问题:一是因激光波束发散会损失大量能量;二是受应用环境的影响较大,如在大气环境下应用时会显著受制于天气情况的变化。因此,对激光通信而言,一个合适的光波导至关重要。


诺贝尔物理学奖获得者高锟博士提出的用于通信的光纤满足了激光通信技术对波导的需求。他提出,玻璃光纤的瑞利散射损耗可以非常低(低于20 dB/km),而光纤中的功率损耗主要来源于玻璃材料中的杂质对光的吸收,因此材料提纯是减小光纤损耗的关键,此外还指出单模传输对保持好的通信性能很重要。1970年,康宁玻璃公司根据高锟博士的提纯建议研制出了损耗约为20 dB/km的石英系多模光纤,使光纤作为通信的传输媒介成为现实。之后经过不断研发,石英系光纤的损耗在1974年达到了1 dB/km,在1979年进一步达到了0.2 dB/km,逼近了石英系光纤的理论损耗极限。至此,光纤通信的条件已完全满足。


早期的光纤通信系统均采用直接检测的接收方式(见图3)。这是一种较简单的光纤通信方式,PD是一种平方律的检波器,只有光信号的强度可以被探测到。换言之,这种通信方式只可以在光强度上加载信息来进行传输。此方式的接收灵敏度取决于数据传输速率,而传输距离是由数据传输速率与接收机跨导放大器(TIA)的热噪声共同决定的。这种直接检测的接收方式从20世纪70年代的第一代光纤通信技术一直延续到了20世纪90年代初期,而对应具体的技术指标也由工作在0.8 µm的GaAs半导体激光器发射45 Mbit/s 信号无中继传输 10 km,提升至工作在1.5 µm的半导体激光器发射2.5 Gbit/s信号无中继传输100 km。


图3 直接检测光纤通信系统示意图


进入20世纪90年代以来,光纤通信技术中的相干检测技术逐渐成为研究热点。初期的相干检测的示意图如图4所示,这也是第一代的相干检测系统。通过使用相干检测,可实现最优探测灵敏度(受限于散弹噪声极限),另外,这也可以通过使用一个大功率的本振来实现。在直接检测探测系统中,只可以探测到信号光的功率PS,而相干检测探测系统中可以探测到的信号大小为,其中PLO是本振光的功率,只要本振光功率足够大就可以达到探测灵敏度的极限。总之,通过引入相干检测技术,接收机的灵敏度得到了极大提升。在早期的相干检测中主要采用外差(Heterodyne)探测和零差(Homodyne)探测,其中外差检测指信号载波与本地载波的频率差值为中频,而零差探测指信号载波与本地载波频率完全相同、相位差固定。为了保证锁频以及恢复接收信号的载波相位,早期的相干检测技术需要复杂的光学锁相环。此外还需要通过偏振控制器(PC)来使得信号光与本振光的偏振态保持一致,以便达到最大效率的接收。


图4 相干检测示意图


光放大器也是光纤通信技术史上重要的成果之一。采用光放大器的光纤链路,也可以达到散弹噪声极限的探测灵敏度,同时可以去除所有的电中继,使得光纤通信技术可以实现长距离传输。光放大的概念在最早的激光器专利中就有所建议,最终在1987年,该项技术被南安普顿大学和贝尔实验室首次实现。


(二)光纤通信技术的研究现状


自20世纪90年代以来,随着互联网技术的迅速发展,用户对互联网流量的需求日益增长,并随之带来了对光纤通信容量的迫切增长需求。起初,当2.5 Gbit/s 的光纤通信技术问世后,人们普遍认为其可以支撑好几代互联网的发展,但光纤通信容量的增长需求很快打破了这一现状。


如何提升光纤通信的容量成为亟需解决的问题。“信息论之父”香农给出了信道容量的极限,任何通信系统传输信息的容量都不会超过这个极限,它与系统的带宽与信道中的信噪比相关。当系统带宽越大、信噪比越高,系统的容量极限就会越高。根据香农的理论,单根光纤纤芯中的容量极限可以表示为:



式(1)中,2为两个正交偏振态复用;B为带宽,光纤的带宽取决于光放大器能够提供的带宽,而C+L波段一共约95 nm;S为入纤功率,受限于光纤的非线性;N为噪声功率,决定于放大器的噪声系数、光纤损耗、跨段长度和跨段数。


典型的C波段掺铒光纤放大器(EDFA)的带宽为35 nm,即约4375 GHz。面对如此巨大的带宽资源,如何充分利用它来实现大容量的光纤传输是关键。由此我们想到了波分复用(WDM)。波分复用是使不同波长的载波同时承载信号,共同在一根光纤中传输,由于各载波的波长不同,故可轻易分别解调出来。此外,光纤布拉格光栅(FBG)的发明也方便了波分复用,它可以用于密集波分复用(DWDM)的滤波器、增加/减少多路复用器、EDFA增益均衡器。图5为WDM光纤通信系统示意图。


图5 WDM 光纤通信系统示意图


从另一个角度看香农公式,可以表示为:



式(2)中,C/B表示频谱效率,单位为bit/s/Hz,而S/N表示信号的电信噪比。例如,当电信噪比为10 dB时,系统所能达到的极限频谱效率为6.9 bit/s/Hz。由于系统的带宽受限于EDFA,光纤通信目前只能获得有限的带宽,故可以通过提高频谱效率的方式来增加信道容量。增加带宽B内的利用率可从两个方向来展开。一是采用DWDM、高阶调制格式、奈奎斯特(Nyquist)整形、超级信道(super channel)、超奈奎斯特传输(FTN)、前向纠错(FEC)、概率整形等技术来逼近香农极限,但频谱效率的增加将对电信噪比的要求有所提升,从而减少了传输的距离。二是充分利用相位、偏振态的信息承载能力来进行传输,这也就是第二代相干光通信系统,接收机如图6所示。偏振复用(PDM)已普遍采用,用两个正交的偏振态来分别承载信息以使信道容量翻倍。第二代相干光通信系统采用光混频器进行內差(Intra-dyne)检测,并采用偏振分集接收,即在接收端将信号光与本振光分解为偏振态互为正交的两束光,在这两个偏振方向上分别拍频,这样可以实现偏振不敏感接收。另外,需要指出的是,此时接收端的频率跟踪、载波相位恢复、均衡、同步、偏振跟踪和解复用均可以通过数字信号处理(DSP)技术来完成,这极大简化了接收机的硬件设计,并提升了信号恢复能力。


图6 第二代相干检测示意图


目前,上述技术产品在商业领域中的应用现状为中国电信集团有限公司和华为技术有限公司已实现了50 G波道间隔、单路200 Gbit/s的偏振复用16 QAM信号,通过概率星座图整形和奈奎斯特整形实现了1142 km传输(实验室可实现1920 km传输),单纤总容量为16 Tbit/s。而最新的研究成果有:贝尔实验室等利用半导体光放大器(SOA)和拉曼放大实现了107 Tbit/s、103 nm(1515~1618 nm)波段范围的300 km传输;华为技术有限公司利用 C+L波段的EDFA实现了124 Tb/s信号在600 km的传输。


三、光纤通信技术发展面临的挑战与思考


(一)超大容量光纤通信系统


通过各种技术的运用,目前学界和业界已基本达到光纤通信系统频谱效率的极限,如要继续增大传输容量,只能通过增加系统带宽B(线性增加容量)或增加信噪比(SNR)(增加功率,对数增加容量)来实现,具体探讨如下。


1. 增加发射功率的解决方案


由于适当增加光纤截面的有效面积可以降低高功率传输带来的非线性效应,因此采用少模光纤代替单模光纤进行传输是一种增加功率的解决方案。此外,当前最通用的解决非线性效应的方案是采用数字背向传输(DBP)算法,但算法性能的提升会导致运算复杂度的增加。原始的DBP算法仅能应对一个通带内的非线性效应,带间的交叉相位调制(XPM)等非线性效应无法得到补偿;而多通带DBP算法可以用来补偿通带间的非线性效应,如XPM和四波混频(FWM),但复杂度会显著增高。近期,机器学习技术在非线性补偿方面的研究显现出了很好的应用前景,极大地降低了算法的复杂度,因此今后可通过机器学习来辅助DBP系统的设计。


2. 增加光放大器的带宽


增加带宽可以突破EDFA的频带范围的限制,除了C波段与L波段以外,可将S波段也纳入应用范围,采用SOA或拉曼放大器进行放大。而现有光纤在S波段之外的频段损耗都较大,如O波段1310 nm附近光纤的损耗就达到了0.3 dB/km,需设计新型光纤来降低传输损耗。但对其余波段而言,有商业利用价值的光放大技术也是一个挑战。这些光放大技术与EDFA相比,存在增益较小、噪声系数较大的问题,如掺镨的O波段光纤放大器(1280~1320nm)的增益为10~25 dB、噪声系数为7 dB;掺铥的S波段光纤放大器(1477~1507 nm)的增益为22 dB、噪声系数为6 dB;而SOA具有类似的噪声系数,且存在对WDM系统的交叉增益调制问题。


3. 低传输损耗光纤的研究


研究低传输损耗光纤是该领域最关键的问题之一。空芯光纤(HCF)具有更低传输损耗的可能,将减少光纤传输的时延,可在极大程度上消除光纤的非线性问题。一项最新研究结果显示,HCF的一种嵌套反谐振无节点光纤(NANF)可实现在1510~1600 nm 波段0.28 dB/km的传输损耗,且理论预测表明该结构具有继续降低损耗至0.1 dB/km 的可能,这将低于石英光纤的材料损耗极限(瑞利散射极限0.145 dB/km)。另外,NANF还具有更宽阔的低损耗窗口的可能,目前已知报道的带宽已达到700 nm。


4. 空分复用相关技术的研究


空分复用技术是实现单纤容量增大的有效方案,具体有:采用多芯光纤进行传输,成倍增加单纤的容量,在这方面最核心的问题是有无更高效率的光放大器,否则只能等价为多根单芯光纤;采用包括线偏振模式(LP mode)、基于相位奇点的轨道角动量(OAM)光束和基于偏振奇点的柱矢量光束(CVB)等的模分复用技术,这类技术可为光束复用提供新的自由度,提高光通信系统的容量,在光纤通信技术中具有广阔的应用前景,但相关光放大器的研究同样是挑战。另外,如何平衡差分模群时延(DMGD)以及多输入多输出(MIMO)数字均衡技术等带来的系统复杂度也值得关注。未来,希望空分复用相关的技术研发可以形成与 WDM系统类似的演进路线以推动光纤通信技术的发展。


(二)各类其他场景下的光纤通信系统


超大容量光纤通信系统是主要应用于骨干网络场景下的光纤通信系统,并不考虑成本问题。而当前光纤通信技术已应用于多种不同场景,大多存在对成本敏感的现实困境。为此,本文将列举出当前若干个成本敏感的场景与系统,并简要分析它们的发展前景。


1. 不同调制检测组合场景下的光纤通信系统


光纤通信技术因调制和检测方式的不同,其应用成本也会有很大差异。当前,在一些成本非常敏感的场景中仍使用最早的光通信方式,即强度调制–直接检测(IMDD);但在对通信性能要求严苛的环境中,采用的是最复杂的传统相干通信方式。未来在这两种通信方式之间可以有很多过渡方案,亟需在性能与成本上进行平衡,找到适合具体场景使用的方案,具体有:采用正交(IQ)调制、直接检测的系统,如常见的单边带(SSB)调制、直接检测的系统;采用强度调制、相干检测的通信方式,利用直接调制激光器(DML)的啁啾对信号相位产生一定的调制,最终再由相干接收机检测出对应的信息。


几类特殊的光纤通信系统,如基于斯托克斯矢量直接检测(SVDD)接收机的系统,基于克莱默–克朗尼格(KK)关系接收机的系统,以及最近新提出的载波辅助差分检测(CADD)接收机的系统。SVDD系统是通过斯托克斯矢量的方式接收信号,接收机比传统相干系统简单,但最终接收信号只能接收到一个偏振态的信息,无法实现完全的偏振复用,亟需研发出基于SVDD接收机的硅光集成芯片,以进行推广应用。而KK系统是根据特殊信号(一般是单边带信号)所具有的KK关系,通过接收的信号幅度推算出相位,在直接检测的系统中实现相干检测的效果,但该系统的频谱效率仅有传统相干检测系统的一半。而CADD系统采用特殊的接收机实现了与相干检测相比接近100%的频谱利用率,但此系统目前只有单偏振态的结果,暂时无法得到偏振复用的结果。希望未来可以研究出类似于传统相干方式的偏振复用、100%频谱利用率的简化相干通信方式。值得注意的是,以上这些系统虽各有利弊,但随着器件与集成技术不断地发展,在不同的应用场景下,如何结合成本作出公平公正的对比是一个关键问题


2. 不同传输距离场景下的光纤通信系统


如果以传输距离与应用场景来划分,可以将光纤通信技术划分为不同的种类,其中典型的短距离光传输系统包括数据中心光互连与接入网系统的光传输链路。目前多数短距离光传输采用IMDD的通信方式,随着传输距离的增加,通信方式逐渐向相干通信靠拢。数据中心内的光互连主要采用基于垂直腔面发射激光器(VCSEL)和多模光纤链路为主的IMDD系统,数据中心间的光互连部分采用IMDD的通信方式,部分将有望采用直接检测与相干检测过渡方案或简化相干检测方案。而中长距传输系统包括应用于城域网的链路,目前都在逐步向相干系统演进。长距离传输系统包括:核心网传输链路和跨洋传输,这些属于对传输性能要求较高且成本不敏感的系统。


四、光纤通信技术发展展望


光纤通信技术从最初的低速传输发展到现在的高速传输,已成为支撑信息社会的骨干技术之一,并形成了一个庞大的学科与社会领域。今后随着社会对信息传递需求的不断增加,光纤通信系统及网络技术将向超大容量、智能化、集成化的方向演进,在提升传输性能的同时不断降低成本,为服务民生、助力国家构建信息社会发挥重要作用


(一)智能化光网络


与无线通信系统相比,智能化光网络的光通信系统及网络在网络配置、网络维护及故障诊断方面仍处于初级阶段,智能化程度不足。由于单根光纤容量巨大(可能大于100 Tbit/s),任一光纤故障的发生将给经济、社会带来很大影响,因此网络参数的监测对未来智能网络的发展至关重要。今后这方面需关注的研究方向有:基于简化相干技术与机器学习的系统参数监测系统、基于相干信号分析和相位敏感光时域反射(OTDR)的物理量监测技术


(二)集成技术与系统


器件集成的核心目的是降低成本。在光纤通信技术中,通过不断的信号再生可以实现信号的短距离高速传输。但是由于相位和偏振态恢复的问题,目前相干系统的集成还较困难。另外,如果大规模集成的光–电–光(OEO)系统可以实现,也会显著提升系统容量。但是限于技术效率低、复杂度高、难以集成等因素,光通信领域不太可能广泛推广如全光2R(再放大、再整形)、3R(再放大、再定时、再整形)等全光信号处理技术。因此,在集成技术与系统方面,今后研究的方向有:对空分复用系统的现有研究虽已较丰富,但学界、业界对空分复用系统关键器件尚未实现技术突破,需进一步加强研究,如集成激光器与调制器、二维的集成接收机、高能效的集成光放大器等;新型光纤可能会显著拓展系统带宽,但仍需深入研究以确保其综合性能与制造工艺能达到现有单模光纤的水平;研究通信链路中可与新型光纤搭配使用的各类器件


(三)光通信器件


在光通信器件中,硅光器件的研发已初见成效。但目前国内相关研究多以无源器件为主,对有源器件的研究较为薄弱。在光通信器件方面,今后的研究方向有:有源器件与硅光器件的集成研究;非硅光器件集成技术的研究,如III-V族材料衬底集成技术的研究;新型器件研发的进一步跟进,如兼具高速与低功耗优点的集成铌酸锂光波导


注:本文内容呈现形式略有调整,若需可查看原文。

- The End

声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/赞助 请加微信:15881101905,备注关键词

微群关键词:天线、射频微波、雷达通信电子战、芯片半导体、信号处理、软件无线电、测试制造、相控阵、EDA仿真、通导遥、学术前沿、知识服务、合作投资.

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者.”

 阅读原文加入知识星球,发现更多精彩内容.

   ///  先别走,安排点个“赞”和“在看” ↓  

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 100浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 52浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 390浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦