干货|高频电路不稳定?教你从零实战小功率开关电源设计

电子工程世界 2021-07-22 07:37

▲ 更多精彩内容 请点击上方蓝字关注我们吧!


本文以实用小型电源的设计为例,说明电源设计的方法。控制电路形式为它激式,采用UC3842为PWM控制电路。电源开关频率的选择决定了变换器的特性。开关频率越高,变压器、电感器的体积越小,电路的动态响应也越好。但随着频率的提高,诸如开关损耗、门极驱动损耗、输出整流管的损耗会越来越突出,对磁性材料的选择和参数设计的要求也会越苛刻。另外,高频下线路的寄生参数对线路的影响程度难以预料,整个电路的稳定性、运行特性以及系统的调试会比较困难。在本电源中,选定工作频率为85 kHz。


01
电源设计指标


小型电源输入、 输出参数如下:

输入电压:AC 110/220 V;

输入电压变动范围:90~240 V;

输入频率:50/60 Hz;

输出电压:12 V;

输出电流:2.5 A。


02
电路结构的选择

小功率开关电源可以采用单端反激式或者单端正激式电路,使电源结构简单,工作可靠,成本低。与单端反激式电路相比,单端正激式电路开关电流小,输出纹波小,更容易适应高频化。用电流型PWM控制芯片UC3842构成的单端正激式开关电源的主电路如图6-1所示。


图6-1 单端正激式开关电源的主电路


单端正激式开关电源加有磁通复位电路,以释放励磁电路的能量。在图6-1中,开关管VT导通时V1导通,副边线圈N2向负载供电,V4截止,反馈电线圈N3的电流为零;VT关断时V1截止,V4导通,N3经电容C1滤波后向UC3842⑦脚供电,同时原边线圈N1上产生的感应电动势使V3导通并加在RC吸收回路。由于变压器中的磁场能量可通过N3泄放,而不像一般的RC D磁通复位电路消耗在电阻上,因此可达到减少发热,提高效率的目的。


03
元件设计


1) 变压器和输出电感的设计
依据UC3842应用方式,选定定时电阻RT=1.8 kΩ,定时电容CT=10 μF。确定开关频率f=85 kHz,周期T=11.8 μs。

设计单端控制开关电源时,一般占空比D最大不超过0.5,这里选择D=0.5,则:


根据电源规格、输出功率、开关频率选择PQ26/25磁芯,磁芯截面积S=1.13 cm2,磁路有效长度l=6.4 cm,饱和磁通密度BS=0.4 T。取变压器最大工作磁感应强度Bmax = BS/3≈0.133 T,则电感系数A为:


变压器原边线圈匝数N1为:


式中,Ui为最小直流输入电压。


交流输入电压的最小值约为90 V, Ui=90× ≈127 V,得出N1=49.9匝,取50匝。原边线圈电感L=AN12=11.1 mH。


副边线圈匝数为:


式中,UDF为整流二极管V1上的压降;UL为输出电感L上的压降。


取UDF+UL=0.7 V,代入式(6-4),得N2=10匝。副边线圈电感:



开关管断开时,N1两端将会产生感应电动势,为了保证开关管正常工作,将感应电动势限制到e=300V。反馈电线圈向UC3842提供U=12V的工作电压,按电容C1上的电压UC=16V计算,以保证有足够的供电电压给UC3842。由N3=(UC/e)N1可得N3=2.67匝,取3匝。


变压器副边电流为矩形波,其有效值为:



导线电流密度取4 A/mm2,所需绕组导线截面积为1.77/4≈0.44 mm2。同样可选择原边绕组导线,原边电流有效值为:



所需绕组导线截面积为0.354/4=0.0885mm2,选用截面积为0.096 21mm2的导线(∅0.41 mm)。取输出电感的电流变化量ΔIL=0.2Io=0.5A,则输出电感为:



式中, U2为副边线圈最小电压。计算得:




取UDF=0.5 V,Uo=3 V,代入式(6-8)可得L=140 μH。根据输出电感上的电流IL=Io,所需绕组导线截面积应为2.5/4=0.625 mm2,故选择截面积为0.6362 mm2导线(∅0.96 mm)。


2) 开关管、整流二极管和续流二极管的选择


由于开关管断开时原边线圈N1两端的感应电动势限制到eL≈300 V,交流输入电压经全波整流、电容滤波后,直流输入电压的最大值。



所以整流二极管所承受的最高反向电压为:



续流二极管所承受的最高反向电压为:



流过整流二极管和续流二极管的最大电流为:



得ID=2.75 A。根据以上计算选择肖特基半桥MBR25120CT,平均整流电流为25 A,反向峰值电压为120 V。开关管选用MOSFET 2SK793,漏源击穿电压为900 V,最大漏极电流为3 A。


3) 反馈电路的设计


电流反馈电路采用电流互感器,通过检测开关管上的电流作为采样电流,原理如图6-2 所示。电流互感器的输出分为电流瞬时值反馈和电流平均值反馈两路,R2上的电压反映电流瞬时值。开关管上的电流变化会使UR2变化,UR2接入UC3842的保护输入端③脚,当UR2=1 V时,UC3842芯片的输出脉冲将关断。通过调节R1、 R2的分压比可改变开关管的限流值,实现电流瞬时值的逐周期比较,属于限流式保护。输出脉冲关断,实现对电流平均值的保护,属于截流式保护。


两种过流保护互为补充,使电源更为安全可靠。采用电流互感器采样,使控制电路与主电路隔离,同时与电阻采样相比降低了功耗,有利于提高整个电源的效率。


图6-2 电流反馈电路


电压反馈电路如图6-3所示。输出电压通过集成稳压器TL431和光电耦合器反馈到UC3842的①脚,调节R1、 R2的分压比可设定和调节输出电压,达到较高的稳压精度。如果输出电压Uo升高,则集成稳压器TL431的阴极到阳极的电流增大,使光电耦合器输出的三极管电流增大,即UC3842①脚对地的分流变大,UC3842的输出脉宽相应变窄,输出电压Uo减小。同样, 如果输出电压Uo减小,则可通过反馈调节使之升高。


图6-3 电压反馈电路


4) 保护电路的设计


图6-4所示为变压器过热保护电路,NTC为测变压器温度的一个负温度系数的热敏电阻。由NTC、 R2、 运放A1构成滞环比较器。在正常工作时,变压器温度正常,NTC的阻值较大,运放A1两输入端电压U+<U-,输出为零;当变压器异常,温度上升到设定值时,运放A1输出高电平,并送到PWM控制芯片使输出脉冲关断。 图6-5所示为输出过电压保护电路。稳压管VS的击穿电压稍大于输出电压额定值,输出正常时,VS不导通,晶闸管V的门极电压为零,不导通。当输出过压时,VS击穿,V受触发导通,使光电耦合器输出三极管电流增大,通过UC3842控制开关管关断。



图6-4 变压器过热保护电路




图6-5 输出过电压保护电路


图6-6所示为空载保护电路。为了防止变压器绕组上的电压过高,同时也为了使电源从空载到满载的负载效应较小,开关稳压电源的输出端不允许开路。在图6-6中,R2、 R3给运放同相输入端提供固定的电压U+。R8为取样负载电流的分流器,当外电路未接负载RL时,R8上无电流,运放的反相输入端电压U=0 V,因而U+>U-,运放的输出电压较高,使三极管VT饱和导通,将电源内部的假负载R7自动接入。当电源接入负载RL时,R8上的压降使U->U+,运放的输出电压为零,VT截止,将R7断开。



图6-6 空载保护电路


5) 输入滤波电路的设计


输入滤波电路具有双向隔离作用,可抑制从交流电网输入的干扰信号,同时也防止开关电源工作时产生的谐波和电磁干扰信号影响交流电网。图6-7所示滤波电路是一种复合式EMI滤波器,L1、L2和C1构成第一级滤波,共模电感L3和电容C2、C3构成第二级滤波。C1用于滤除差模干扰,选用高频特性较好的薄膜电容。电阻R给电容提供放电回路,避免因电容上的电荷积累而影响滤波器的工作特性。C2、C3跨接在输出端,能有效地抑制共模干扰。为了减小漏电流,C2、C3宜选用陶瓷电容器。


图6-7 输入滤波电路


04
测试


在输入电压为220V的条件下,输入功率是脉冲序列,周期为10ms,即每半个工频周期电源输入端通过整流桥为输入平滑滤波电容充一次电。在各种不同的负载状况下,当输入电压从90V变化到250V时,相应的输出电压的测试结果如表6-1所示。


实测各种负载状况下的效率如表6-2所示。通过实际应用,电源满足了设计要求。




免责声明:本文系网络转载,版权归原作者所有。如本文所用视频、图片、文字如涉及作品版权问题,请在文末留言告知,我们将在第一时间处理!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。


推荐阅读
干货 | 输出电压为什么要偏移?差分电路原理解析

干货 | 一文通吃整流滤波电路

干货|如何成功设计电源模块,这篇讲全了

干货|一文读懂二十种开关电源拓扑结构

众号内回复您想搜索的任意内容,如问题关键字、技术名词、bug代码等,就能轻松获得与之相关的专业技术内容反馈。快去试试吧!

由于微信公众号近期改变了推送规则,如果您想经常看到我们的文章,可以在每次阅读后,在页面下方点一个「赞」或「在看」,这样每次推送的文章才会第一时间出现在您的订阅列表里。

或将我们的公众号设为星标。进入公众号主页后点击右上角「三个小点」,点击「设为星标」,我们公众号名称旁边就会出现一个黄色的五角星(Android 和 iOS 用户操作相同)。


聚焦行业热点, 了解最新前沿
敬请长按二维码,关注EEWorld电子头条
即时参与讨论电子工程世界最火话题,
抢先知晓电子工程业界最新资讯
欢迎长按二维码关注:
EEWorld订阅号:电子工程世界
EEWorld服务号:电子工程世界福利社
电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论 (0)
  • 伴随无线技术的迅速发展,无线路由器市场商机日益庞大。现代消费者在选购无线路由器(Wi-Fi AP)时,通常依赖的是该产品在无干扰的实验室环境中,量测得到的数据报告。然而,这些数据往往是在受控的RF隔离环境中进行测试,无法完全反映真实使用场景。这种情况导致许多消费者抱怨,他们购买的产品效能与宣称的数据不符。在实际应用中,消费者常因Wi-Fi讯号不稳定、传输速度不如预期或设备过热而产生客诉。产品仰赖实验室的数据够吗?无线路由器(Wi-Fi AP)ODM供货商遇到什么挑战?一家台湾知名的无线路由器(W
    百佳泰测试实验室 2025-04-05 00:12 44浏览
  • 在影像软的发展历程中,美图曾凭借着美图秀秀等一系列产品,在“颜值经济”的赛道上占据了领先地位,成为了人们日常生活中不可或缺的一部分,也曾在资本市场上风光无限,2016 年上市时,市值一度超过46亿美元,备受瞩目。 然而,随着市场的不断发展和竞争的日益激烈,美图逐渐陷入了困境。商业模式单一,过度依赖在线广告收入,使得其在市场波动面前显得脆弱不堪;多元化尝试,涉足手机、电商、短视频、医美等多个领域,但大多以失败告终,不仅未能带来新的增长点,反而消耗了大量的资源。更为严峻的是,用户流失问题日
    用户1742991715177 2025-04-05 22:24 64浏览
  • 在追求环境质量升级与产业效能突破的当下,温湿度控制正成为横跨多个行业领域的核心命题。作为环境参数中的关键指标,温湿度的精准调控不仅承载着人们对舒适人居环境的期待,更深度关联着工业生产、科研实验及仓储物流等场景的运营效率与安全标准。从应用场景上看,智能家居领域要求温湿度系统实现与人体节律的协同调节,半导体洁净车间要求控制温湿度范围及其波动以保障良品率,而现代化仓储物流体系则依赖温湿度的实时监测预防各种产品的腐损与锈化。温湿度传感器作为实现温湿度监测的关键元器件,其重要性正在各行各业中凸显而出。温湿
    华普微HOPERF 2025-04-07 10:05 69浏览
  • 引言:POPO声的成因与影响在语音芯片应用中,WT588F08A作为一款支持DAC+功放输出的高集成方案,常因电路设计或信号处理不当,在音频播放结束后出现POPO声(瞬态噪声)。这种噪声不仅影响用户体验,还可能暴露电路设计缺陷。本文将基于实际案例,解析POPO声的成因并提供系统化的解决方案。一、POPO声的根源分析1. 功放电路状态切换的瞬态冲击当DAC输出的音频信号突然停止时,功放芯片的输入端若处于高阻态或无信号状态,其内部放大电路会因电源电压突变产生瞬态电流,通过喇叭表现为POPO声。关键因
    广州唯创电子 2025-04-07 09:01 75浏览
  • 引言:小型化趋势下的语音芯片需求随着消费电子、物联网及便携式设备的快速发展,产品设计对芯片的小型化、高集成度和低功耗提出了更高要求。厂家凭借其创新的QFN封装技术,推出WTV系列(如WTV380)及WT2003H系列语音芯片,以超小体积、高性能和成本优势,为紧凑型设备提供理想解决方案。产品核心亮点1. QFN封装技术赋能超小体积极致尺寸:WTV380采用QFN32封装,尺寸仅4×4毫米,WT2003H系列同样基于QFN工艺,可满足智能穿戴、微型传感器等对空间严苛的场景需求。高密度集成:QFN封装
    广州唯创电子 2025-04-07 08:47 60浏览
  • 医疗影像设备(如CT、MRI、超声诊断仪等)对PCB的精度、可靠性和信号完整性要求极高。这类设备需要处理微伏级信号、高频数据传输,同时需通过严格的EMC/EMI测试。制造此类PCB需从材料选择、层叠设计、工艺控制等多维度优化。以下是关键技术与经验分享。 1. 材料选择:高频与生物兼容性优先医疗影像设备PCB常采用 Rogers RO4000系列 或 Isola FR4高速材料,以降低介电损耗并保证信号稳定性。例如,捷多邦在客户案例中曾为某超声探头厂商推荐 Rogers RO4350B
    捷多邦 2025-04-07 10:22 69浏览
  • 及时生产 JIT(Just In Time)的起源JIT 起源于 20 世纪 70 年代爆发的全球石油危机和由此引发的自然资源短缺,这对仰赖进口原物料发展经济的日本冲击最大。当时日本的生产企业为了增强竞争力、提高产品利润,在原物料成本难以降低的情况下,只能从生产和流通过程中寻找利润源,降低库存、库存和运输等方面的生产性费用。根据这种思想,日本丰田汽车公司创立的一种具有特色的现代化生产方式,即 JIT,并由此取得了意想不到的成果。由于它不断地用于汽车生产,随后被越来越多的许多行业和企业所采用,为日
    优思学院 2025-04-07 11:56 82浏览
  • 在科技浪潮奔涌的当下,云计算领域的竞争可谓是如火如荼。百度智能云作为其中的重要参与者,近年来成绩斐然。2024年,百度智能云在第四季度营收同比增长26%,这样的增速在行业内十分惹眼。回顾全年,智能云业务的强劲增长势头也十分明显,2024年第一季度,其收入达到47亿元,同比增长12%;第二季度营收51亿元,同比增长14%。从数据来看,百度智能云在营收方面一路高歌猛进,展现出强大的发展潜力。然而,市场对百度智能云的表现似乎并不完全买账。2024年,尽管百度智能云数据亮眼,但百度股价却在震荡中下行。在
    用户1742991715177 2025-04-06 20:25 61浏览
  • 【拆解】+沈月同款CCD相机SONY DSC-P8拆解 这个清明假期,闲来无事,给大伙带来一个老古董物品的拆解--索尼SONY DSC-P8 CCD相机。这个产品是老婆好几年前在海鲜市场淘来的,由于显示屏老化,无法正常显示界面了,只有显示背光。但是这也无法阻止爱人的拍照。一顿盲操作依旧可以拍出CCD古董相机的质感。如下实拍: 由于这个相机目前都在吃灰。我就拿过来拆解,看看里面都是怎样个设计,满足下电子爱好者的探索。 首先给大伙展示下这台老相机的全貌。正视图  后视图 
    zhusx123 2025-04-06 17:38 81浏览
  •   安全生产预警系统作为现代工业与安全管理的重要组成部分,正以前所未有的技术引领力,创新性地塑造着未来的安全管理模式。这一系统通过集成多种先进技术,如物联网、大数据、人工智能、云计算等,实现了对生产环境中潜在危险因素的实时监测、智能分析与及时预警,为企业的安全生产提供了坚实的技术保障。   技术引领:   物联网技术:物联网技术使得各类安全监测设备能够互联互通,形成一张覆盖全生产区域的安全感知网络。传感器、摄像头等终端设备实时采集温度、压力、气体浓度、人员位置等关键数据,为预警系统提供丰富的
    北京华盛恒辉软件开发 2025-04-05 22:18 52浏览
  • 【拆解】+南孚测电器拆解 之前在天猫上买了一盒南孚电池,他给我送了一个小东西—测电器。今天我们就来拆解一下这个小东西,看看它是怎么设计和工作的。 三颗指示灯显示电池剩余电量。当点亮3颗LED时,则表示点亮充足。当点亮2颗LED时,则表示还能用。当点亮1颗LED时,表示点亮地建议更换,当无法点亮LED时,则表示没电了。外壳上还印有正负极,以免用户将电池放反。 这个小东西拆解也很方便,一个螺丝刀稍微撬几下。外壳就下来了,它是通过卡扣连接。 开盖后,测电线路板清晰呈现在眼前。 让我们看看小小的线路板有
    zhusx123 2025-04-05 15:41 50浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦