NTC热敏电阻与浪涌电流,热启动不会失效?

原创 硬件工程师炼成之路 2021-07-19 20:30

前一段时间我研究了下开关电源,当时有两个问题也是没搞明白。

问题是关于NTC热敏电阻与浪涌电流的。

 

1、为啥小功率电源的NTC不用加继电器,而大功率要加继电器?仅仅是因为降低功耗提高效率吗?

2、小功率电源NTC不用考虑热启动吗?

 

下面给大家说一下我是如何找答案的

 

问题背景

为了照顾下不是做电源的同学,我先简单介绍下这个NTC是什么,干什么用的,这样大家都能有得看。

 

NTC是负温度系数的热敏电阻,就是温度越高,阻值越低

NTC放在上面这个电路里面,作用就是限制开机时候的浪涌电流

在开机之前,滤波电容是没有电的,电容两端电压为0V。在开机的瞬间,电容2端的电压不能突变,还是0V,相当于短路,同时二极管导通压降也很小,所以压降主要落在了NTC上面。

可以想象,如果回路中没有NTC,那么这个电流是非常大的,或者NTC阻值很小,电流也会很大。

在线路上面串联一个NTC热敏电阻,在开机之前,热敏电阻温度比较低,所以电阻比较大,可以很好限制开机时的浪涌电流。

开机之后,热敏电阻温度起来了,阻值比较低,也不至于产生过大的损耗。

 

那为什么要抑制浪涌电流呢?

因为开机时,这个大的电流会流过二极管,如果电流过大的话,二极管可能会损坏,毕竟,整流二极管都是有一个参数叫IFSM,即允许通过的最大浪涌电流是有限制的

IFSM就是下面这个参数:

 

问题

那么问题就来了。

如果开机之后使用一段时间,然后立马断电再上电,这个时候热敏电阻温度还没有降下去,阻值还是比较小的。

那岂不是热敏电阻失去了原有的作用,浪涌电流还是很大?

我们以TDK的B57236S0509热敏电阻为例子,如下图,这是这个NTC温度与阻值的曲线。

在25℃时是5Ω,在75℃只有1.5Ω左右

我们的电源通常是密封的,工作一段时间之后,如果散热差的话,内部整体温度是可能达到75℃的。

如果在25℃时抑制浪涌电流是合适的,那么在75℃时,很有可能就不能很好的抑制了。

当然,我这里说75℃只是举个例子,实际温度可高可低,我只是为了说明,温度高了,热敏电阻阻值会降低不少。

 

我们先按照这个想法简单计算一下:

世界各国市电最高的是240V,允许偏差范围是±10%,那么最高电压就是240*110%=264V。

这个电压是有效值,那么峰值电压是373V。开机之后的瞬间,电容相当于是短路,并且,如果开机时正好处于市电波峰或者波谷的时刻(市电为正弦波,波峰和波谷时电压分别为±373V),那么这个373V会通过两个二极管加到热敏电阻NTC上面了。

如果是冷启动(25℃),那么NTC热敏电阻是5Ω,浪涌电流峰值就是 373V/5Ω=74.6A(粗糙计算,忽略二极管导通电压)。

如果是热启动(75℃),那么热敏电阻阻值为1.5Ω,浪涌电流峰值就是373V/1.5Ω=248.6A

 

那这两个电流大不大呢?

实际应用中,我找到一个60W的开关电源(比如12V/5A输出的)电路图。

图中热敏电阻选用5D-09(25℃时电阻就是5Ω),整流桥用的是KBL406

查看整流桥KBL406的手册,IFSM=120A,所以说浪涌电流要限制到120A。

从前面算出,25℃冷启动时电流峰值为74.6A,小于IFSM,所以是没问题的。

但是75℃热启动的话,电流峰值就达到了248.6A,超过了IFSM

 

这么看的话,如果热启动的话,好像是有烧坏的风险

 

那到底有风险吗?

 

我上网查了查,发现个现象

大功率电源的NTC一般会加个继电器,小功率不会。

目的是开机电容充完电之后,将NTC短路掉,这样NTC自己不会发热,NTC会处于一个较低的温度。这样即使工作一段时间,掉电马上开机,NTC的阻值也不会太小。

也就是说,大功率电源是有降低这个风险的

不过加继电器可能更多原因是为了降低NTC的损耗,为了提高效率

但不管怎么说,大功率电源加了继电器确实是降低了热启动的风险。

 

问题是,为什么小功率电源不加继电器?难道是后娘养的?

 

大功率电源与小功率电源在电路上到底有上面区别呢?

 

最大的区别是,功率大的电源,整流桥后面的电容容量更大,电容容量更大会有什么不同呢?

第一是,容量更大,那么电容的ESR会更小。

第二是,容量更大,那么电容充电到相同的电压,电流相同的情况下,充电的时间更长。

 

关于第一点,我们应该可以想到,前面的计算方法是不精确的,没有考虑到电容的ESR,把电容当作是理想的来看。

那么我们现在把ESR补上。

 

       考虑电容ESR的影响

我们先要知道铝电解电容的ESR情况,这个可以根据损耗正切值得到。

耐压达到400V的铝电解电容的损耗正切值,厂家一般只标注最大值,最大值一般是0.15,0.2或者是0.25,各家的有一些区别。

比如下图是台湾Leon的铝电解电容,可以看到,400V耐压的电容损耗正切值最大是0.24

当然,这个是最大值Max,电容实物可能达不到。

 

我们根据损耗正切值可以求得电容的ESR值,方法也非常简单。

损耗角正切值的定义是有功功率除以无功功率,因为电容等效为ESR和电容C串联(此时频率低,为120Hz,等效串联电感可以忽略),功率等于电流的平方乘以阻抗,串联电流是一样的,所以功率之比就是阻抗之比。

下面是计算过程,就一个公式

我们求得120uF/400V的铝电解电容的ESR是2.65Ω,当然,这个是可能出现的最大值,实物应该是比这个要小的,因为厂家给的损耗正切值是最大值。

虽说这个具体ESR值是多少,咱们也不知道,不过我们可以看到,这已经比75℃时的NTC的阻值1.5Ω要大了。

至少能说明这个铝电解电容的ESR已经是相当可观的了,不能忽略掉。

 

如果假定就是2.65Ω,计算此时的浪涌电流是373V/(1.5+2.65)=89.87A,这个时候已经比二极管的IFSM=120A要小了。

 

当然了,实际铝电解电容的ESR比2.65Ω要小,并且,这是在20℃时的值,温度升高,铝电解电容的ESR会降低,实际浪涌电流还是会大一些。

另外,不同牌子的铝电解电容ESR也是不同的,如果选用损耗正切值最大是0.15的,那么最大ESR是1.66Ω,计算此时的浪涌电流是373/(1.5+1.66)=118A,这已经很接近IFSM=120A了。

所以好像还是有风险

 

虽说没到最终结果,但是我们现在应该知道这一点,在抑制浪涌电流这方面,铝电解电容的ESR还是起了很大的作用

 

从电容手册可以看到,相同耐压下,最大损耗正切值一样。

那么根据公式,铝电解电容的ESR与容量成反比,而开关电源中我们实际使用的滤波电容容量大小与功率成正比。

10W使用22uF滤波电容,ESR最大是14.45Ω

60W使用120uF滤波电容,ESR最大是2.65Ω

600W使用1200uF滤波电容,ESR最大是0.265Ω

 

所以也能看出,功率越大,所用的电容容量越大,那么ESR越小,对浪涌电流的抑制作用越小

反之,功率越小,使用的电容容量越小,ESR越大,对浪涌电流的抑制作用越大

 

当然,这好像也不能说明什么

因为功率小,我们会选用电流更小的二极管,二极管的IFSM也会更低,我们本就需要将浪涌电流限制到更低的水平。

 

所以,还是说明不了为什么小功率电源的NTC不用继电器,大功率电源的NTC要用继电器。

 

这时候我想起来了二极管的IFSM这个参数

 

二极管IFSM再次解读

IFSM的值是在某一测试条件下的值

它指的是,给二极管通过半个正弦波的电流,允许通过的电流最大值就是IFSM值。

当然也指明了这个正弦波的频率是50hz或者是60hz,对应的半波时间就是10ms和8.3ms

如果滤波电容较小,那么很容易想到,电容充电时间根本就不需要充8.3ms这么久。关于这一点,我简单的做了个仿真。

假如是热启动,原本5Ω的NTC阻值变为1.5Ω,电解电容容量为120uFESR为R2=2.65Ω,当在市电正弦波为波峰时上电,LTspice仿真电路电路如下图

输入电压与二极管D1的电流波形如下图:

可以看到,二极管的最高电流与前面的计算基本是一致的,373V/(1.5+2.65)=89.87A。

但是电流的波形根本就不是IFSM的那种正弦波测试波形,而是很快下降的,并且持续的时间大概是1.5ms,比8.3ms与10ms小不少。

想想这个现象也正常。

根据电荷量Q=C*U=I*t,电容量限,以较大的电流去充电,电容的电压可不就很快充上来了么?

 

假如是大功率的电源,滤波电容是1000uF,那么电流冲击如何呢?

我们仅仅将电容改成1000uf,其它参数不变(先暂时不管ESR的减小)。仿真波形如下

可以看到,最高值还是不变的,接近90A,但是电流持续的时间变长了,大概是3.5ms

 

尽管两种情况的浪涌电流峰值是相同的,都接近于90A。但是在电容容量更大时,因为持续的时间更长,对二极管的冲击肯定是更剧烈的。

可以想象,这两种情况下,电流持续时间都是小于8.3ms的,那么对二极管的真实的热冲击,都是小于芯片手册里面8.3ms的IFSM电流正弦波的冲击的

 

这样我们可以反过来想,在电容更小的时候,因为充电电流持续的时间更短,那浪涌电流峰值是不是可以超过IFSM也不会烧坏。

电容越小,是不是越可以通过更高的尖峰电流呢?

 

那有没有参数衡量能超过IFSM多少呢?

还真有,就是I2t

但不是每个整流二极管都会标这个参数。

我找到了一个更为详细的二极管的手册,D75JFT80V

可看到,它有2个IFSM参数。

10ms(对应50Hz)时IFSM=400A

1ms时IFSM=1265A

也就是说如果浪涌电流是只持续1ms的正弦波形,那么可以扛住1265A,这是8.3ms的400A的3倍多。

 

然后我们注意下二极管的I2t这个参数,单位是A2S,电流的平方乘以时间。

这个I2t应该就是衡量二极管可通过电流与时间的关系的。这个二极管的I2t=800。

 

其实,我们通过I2t=800,是可以推算出t=10ms和t=1ms的IFSM

在t=10ms的时候

I2t=(0.707*IFSM)^2*10ms=800,可求得10ms时的IFSM=400A。其中0.707是因为正弦波的有效值是峰值的0.707倍。

同理,t=1ms的时候

I2t=(0.707*IFSM)^2*1ms=800,可求得1ms时的IFSM=1265A。

从上图可以看到,算出的这两个参数都是和芯片手册吻合的。

 

从以上可以看出,如果通过电流的时间短,那么二极管可以通过最大电流峰值是可以更高的

这个D75JFT80V也给出了不同时间允许的电流曲线,如下图:

 

根据这个方法,我们再来看看最开始说的60W那个电路,使用的是KBL406

KBL406的I2t=59.8

经过仿真我们知道,电流持续时间大概是1.5ms(注意,如果不足1ms,也要用1ms计算,因为这个参数有要求,那就是1ms<t<8.3ms)。

根据I2t=(0.707*I)^2*1.5ms=59.8,我们得到I=282A。也就是说如果电流只流过1.5ms,那么这个整流桥可以扛过282A的电流。

从前面计算我们知道,即使是75℃热启动,使用ESR更低的电容(损耗正切值0.15),电流峰值可能会达到I=373/(1.66+1.5)=118A,这个也是不到282A的一半的,所以这个桥应该不会被浪涌电流损坏

 

好了,关于为什么小功率电源的NTC不用加继电器,而大功率电源,一般要加继电器。答案应该就有了

 

小功率电源的滤波电容容量小ESR大,对抑制浪涌尖峰有很好的作用 。如此同时,滤波电容小,浪涌持续的时间就短,实际二极管能扛过的浪涌电流更大,能超过芯片手册里面的IFSM(8.3ms/10ms时)更多。所以即使是热启动,NTC的阻值比较低,浪涌电流大些,也不会烧坏。

反之,大功率电源的滤波电容容量大,ESR小,对抑制浪涌尖峰作用小,抑制浪涌尖峰对NTC的依赖更大。同时浪涌持续时间长,可能超过IFSM(8.3ms/10ms时)一点点就坏了,所以必须严格控制,不然就真的拔插下电源进行热启动整流二极管就坏了

 

以上就是我分析问题的过程,如有问题,请在底部留言区指出。

 

老规矩,在我的微信公众号后台回复“炼成之路,就可以下载文章使用过的芯片手册,仿真文件, 60W的开关电源原理图等(放置在电源目录里面)。

硬件工程师炼成之路 硬件工程师的分享、交流、学习的地方。
评论 (0)
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 114浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 87浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 121浏览
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 78浏览
  • 时源芯微 专业EMC解决方案提供商  为EMC创造可能(适用于高频时钟电路,提升EMC性能与信号稳定性)一、设计目标抑制电源噪声:阻断高频干扰(如DC-DC开关噪声)传入晶振电源。降低时钟抖动:确保晶振输出信号纯净,减少相位噪声。通过EMC测试:减少晶振谐波辐射(如30MHz~1GHz频段)。二、滤波电路架构典型拓扑:电源输入 → 磁珠(FB) → 大电容(C1) + 高频电容(C2) → 晶振VDD1. 磁珠(Ferrite Bead)选型阻抗特性:在目标频段(如100MHz~1GH
    时源芯微 2025-04-14 14:53 88浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 140浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 110浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 88浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 69浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 130浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 84浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 58浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦