Xilinx的PCIe仿真模型学习

面包板社区 2019-08-15 16:55


什么是Xilinx的PCIe仿真模型?


这里所说的Xilinx PCIe仿真模型是指在例化PCIe核时候其自动生成的参考时自动产生的仿真模型,用户可以用此模型来仿真其PCIe设计。这里着重学习为仿真endpoint提供的RP模型,Xilinx称其为downstream port model,简称DS端口模型。该模型框架图见下图。


图中的dsport模块,个人理解是模拟root端,而dsport上方的usrapp_rx和usrapp_tx可以理解为驱动+用户层程序,所以学习这2个usrapp源文件,对于用户理解pcie的驱动和顶层应用程序开发还是有好处的。该模型由于是downstream端口,所以大部分测试功能都在usrapp_tx里实现并发起。所以后面学习的重点是在仿真的同时,理解吃透usrapp_tx及其从它出调用的子程序。


使用Xilinx的PCIe的时候,例化示例都会自动生成仿真模型,同时官网提供的基于xapp1052的参考设计,也同时提供仿真BMD的仿真模型。即所谓的下行端口模型(downstream port model),所以PCIe例化之后产生的参考设计都会自动生成一个dsport的模型文件,让用户可以以此模拟一个root端口来测试其endpoint端口。下图给出了下行端口模型的结构框图:


图1:DS端口模型结构框图


当然,上图是仿真endpoint的模型,而且大部分用户都是实例化endpoint,如果是设计root端口的话,可以忽略本文。以下描述都是基于使用endpoint。用户例化的PCIe核可是视为EP,上图DS模型就是RP,仿真顶层还需要一个Testbench将RP和EP包裹起来,所有这些文件在PCIe核例化的时候自动产生,具体位置(这里以xapp1052为例)为:


图2:仿真文件存放位置


如图2所示,dsport文件夹存放都是图1灰色框部分文件,functional文件夹存放的是Testbench顶层以及系统时钟和复位生成文件,而tests文件夹则存放了用户层测试激励(体现与图1右侧的“Test Program”),这些激励都是usrapp_tx发起。下面会试着详细介绍图1中的几个灰框里的文件,主要是usr_app_rx和usr_app_tx以及Test Program。


dsport(downstream port)

这个模块主要实现root complex,Xilinx一直强调这个模块不能看成是严格的root complex,因为它并不能提供真正root complex提供的很多特性,只是方便用户仿真而创建的模型。用户侧的endpoint经PCIe链路发送TLP到下行端口(downstream port)模型。


xapp1052里实现dsport的源文件主要应该是xilinx_pcie_2_1_rport_7x.v,pcie_2_1_rport_7x.v,而文件pci_exp_usrapp_cfg.v用来对DS模型进行配置。


RX_APP(pci_exp_usrapp_rx.v)

在RX_APP可能主要定义了解析接收用户接口状态机。该状态机的状态变量如下:


 /* State variables */ `define TRN_RX_RESET 5'b00001 `define TRN_RX_DOWN 5'b00010 `define TRN_RX_IDLE 5'b00100 `define TRN_RX_ACTIVE 5'b01000 `define TRN_RX_SRC_DSC 5'b10000

TX_APP(pci_exp_usrapp_tx.v)


usrapp_tx为PCIe链路两端的数据传输,发送TLP到dsport模块。包解析或测试程序由usrapp_tx启动,用于仿真endpoint接口。所有测试程序都是实现定义好的,存放在上述tests文件夹下的文件之中(tests.vh)。在usrapp_tx源文件中直接调用tests.vh

 //Test starts here if (testname == "dummy_test") begin $display("[%t] %m: Invalid TESTNAME: %0s", $realtime, testname); $finish(2); end `include "tests.vh" else begin $display("[%t] %m: Error: Unrecognized TESTNAME: %0s", $realtime, testname); $finish(2); end

而在tests.vh文件中则通过include语句将存放测试程序的源文件包括进来,Xilinx提供很多事先定义好的测试程序,但是在xapp1052示例中的sample_tests1.vh仅提供了三个测试程序,它们分别是sample_smoke_test0,sample_smoke_test1以及pio_writeReadBack_test0。


sample_smoke_test0发起一个PCI Type0配置读TLP,并等待完成TLP;然后将返回值与预期的器件ID和供应商ID进行比较。


sample_smoke_test1执行和sample_smoke_test0一样的操作,但是使用了可预期任务程序。这个测试使用了两个独立的测试程序线程:一个线程发送PCI Type0配置读TLP,第二个线程提交一个带数据的完成报文TLP可预期任务。这个测试展示了使用可预期任务实现并行测试的结构。该测试可以用于确认从用户设计收到的任何TLP,也可以在当顺序不重要时确认收到的TLP。


pio_writeReadBack_test0测试程序先发送一个单DW写TLP,然后发送一个单DW读TLP;然后等待完成报文TLP,并验证读写数据是否一致。


不管测试程序要实现怎样的功能,都大致分为以下6个步骤:

  1. 执行条件比较特定的测试名称(比如确认当前测试是不是pio_writeReadBack_test0?或其它测试)
  2. 设置仿真退出时间,防止仿真进挂起
  3. 等待正常复位,以及链路链接(link-up)
  4. 初始化endpoint配置空间
  5. 在DS端口模型和endpoint直接发送和接收TLP
  6. 验证测试是否成功

pio_writeReadBack_test0


本节来看看pio_writeReadBack_test0测试程序里的具体代码
else if(testname == "pio_writeReadBack_test0")begin// This test performs a 32 bit write to a 32 bit Memory space and performs a read back//board.RP.tx_usrapp.TSK_SIMULATION_TIMEOUT(10050);board.RP.tx_usrapp.TSK_SIMULATION_TIMEOUT(20050);board.RP.tx_usrapp.TSK_SYSTEM_INITIALIZATION;board.RP.tx_usrapp.TSK_BAR_INIT;//--------------------------------------------------------------------------// Event : Testing BARs//--------------------------------------------------------------------------for (board.RP.tx_usrapp.ii = 0; board.RP.tx_usrapp.ii <= 6; board.RP.tx_usrapp.ii =board.RP.tx_usrapp.ii + 1) beginif (board.RP.tx_usrapp.BAR_INIT_P_BAR_ENABLED[board.RP.tx_usrapp.ii] > 2'b00) // bar is enabledcase(board.RP.tx_usrapp.BAR_INIT_P_BAR_ENABLED[board.RP.tx_usrapp.ii])2'b01 : // IO SPACEbegin$display("[%t] : Transmitting TLPs to IO Space BAR %x", $realtime, board.RP.tx_usrapp.ii);//--------------------------------------------------------------------------// Event : IO Write bit TLP//--------------------------------------------------------------------------board.RP.tx_usrapp.TSK_TX_IO_WRITE(board.RP.tx_usrapp.DEFAULT_TAG,board.RP.tx_usrapp.BAR_INIT_P_BAR[board.RP.tx_usrapp.ii][31:0], 4'hF, 32'hdead_beef);board.RP.com_usrapp.TSK_EXPECT_CPL(3'h0, 1'b0, 1'b0, 2'b0,board.RP.tx_usrapp.COMPLETER_ID_CFG, 3'h0, 1'b0, 12'h4,board.RP.tx_usrapp.COMPLETER_ID_CFG, board.RP.tx_usrapp.DEFAULT_TAG,board.RP.tx_usrapp.BAR_INIT_P_BAR[board.RP.tx_usrapp.ii][31:0], test_vars[0]);board.RP.tx_usrapp.TSK_TX_CLK_EAT(10);board.RP.tx_usrapp.DEFAULT_TAG = board.RP.tx_usrapp.DEFAULT_TAG + 1;//--------------------------------------------------------------------------// Event : IO Read bit TLP//--------------------------------------------------------------------------// make sure P_READ_DATA has known initial valueboard.RP.tx_usrapp.P_READ_DATA = 32'hffff_ffff;forkboard.RP.tx_usrapp.TSK_TX_IO_READ(board.RP.tx_usrapp.DEFAULT_TAG,board.RP.tx_usrapp.BAR_INIT_P_BAR[board.RP.tx_usrapp.ii][31:0], 4'hF);board.RP.tx_usrapp.TSK_WAIT_FOR_READ_DATA;joinif (board.RP.tx_usrapp.P_READ_DATA != 32'hdead_beef)begin$display("[%t] : Test FAILED --- Data Error Mismatch, Write Data %x != Read Data %x",$realtime, 32'hdead_beef, board.RP.tx_usrapp.P_READ_DATA);test_failed_flag = 1;endelsebegin$display("[%t] : Test PASSED --- Write Data: %x successfully received",$realtime, board.RP.tx_usrapp.P_READ_DATA);endboard.RP.tx_usrapp.TSK_TX_CLK_EAT(10);board.RP.tx_usrapp.DEFAULT_TAG = board.RP.tx_usrapp.DEFAULT_TAG + 1;end2'b10 : // MEM 32 SPACEbegin$display("[%t] : Transmitting TLPs to Memory 32 Space BAR %x", $realtime,board.RP.tx_usrapp.ii);//--------------------------------------------------------------------------// Event : Memory Write 32 bit TLP//--------------------------------------------------------------------------board.RP.tx_usrapp.DATA_STORE[0] = 8'h04;board.RP.tx_usrapp.DATA_STORE[1] = 8'h03;board.RP.tx_usrapp.DATA_STORE[2] = 8'h02;board.RP.tx_usrapp.DATA_STORE[3] = 8'h01;board.RP.tx_usrapp.TSK_TX_MEMORY_WRITE_32(board.RP.tx_usrapp.DEFAULT_TAG,board.RP.tx_usrapp.DEFAULT_TC, 10'd1,// board.RP.tx_usrapp.BAR_INIT_P_BAR[board.RP.tx_usrapp.ii][31:0]+8'h10, 4'h0, 4'hF, 1'b0);//Modified By Jerryboard.RP.tx_usrapp.BAR_INIT_P_BAR[board.RP.tx_usrapp.ii][31:0]+8'h08, 4'h0, 4'hF, 1'b0);board.RP.tx_usrapp.TSK_TX_CLK_EAT(10);board.RP.tx_usrapp.DEFAULT_TAG = board.RP.tx_usrapp.DEFAULT_TAG + 1;//--------------------------------------------------------------------------// Event : Memory Read 32 bit TLP//--------------------------------------------------------------------------// make sure P_READ_DATA has known initial valueboard.RP.tx_usrapp.P_READ_DATA = 32'hffff_ffff;forkboard.RP.tx_usrapp.TSK_TX_MEMORY_READ_32(board.RP.tx_usrapp.DEFAULT_TAG,board.RP.tx_usrapp.DEFAULT_TC, 10'd1,//board.RP.tx_usrapp.BAR_INIT_P_BAR[board.RP.tx_usrapp.ii][31:0]+8'h10, 4'h0, 4'hF);//Modified by Jerryboard.RP.tx_usrapp.BAR_INIT_P_BAR[board.RP.tx_usrapp.ii][31:0]+8'h08, 4'h0, 4'hF);board.RP.tx_usrapp.TSK_WAIT_FOR_READ_DATA;joinif (board.RP.tx_usrapp.P_READ_DATA != {board.RP.tx_usrapp.DATA_STORE[3],board.RP.tx_usrapp.DATA_STORE[2], board.RP.tx_usrapp.DATA_STORE[1],board.RP.tx_usrapp.DATA_STORE[0] })begin$display("[%t] : Test FAILED --- Data Error Mismatch, Write Data %x != Read Data %x",$realtime, {board.RP.tx_usrapp.DATA_STORE[3],board.RP.tx_usrapp.DATA_STORE[2],board.RP.tx_usrapp.DATA_STORE[1],board.RP.tx_usrapp.DATA_STORE[0]},board.RP.tx_usrapp.P_READ_DATA);test_failed_flag = 1;endelsebegin$display("[%t] : Test PASSED --- Write Data: %x successfully received",$realtime, board.RP.tx_usrapp.P_READ_DATA);endboard.RP.tx_usrapp.TSK_TX_CLK_EAT(10);board.RP.tx_usrapp.DEFAULT_TAG = board.RP.tx_usrapp.DEFAULT_TAG + 1;end2'b11 : // MEM 64 SPACEbegin$display("[%t] : Transmitting TLPs to Memory 64 Space BAR %x", $realtime,board.RP.tx_usrapp.ii);//--------------------------------------------------------------------------// Event : Memory Write 64 bit TLP//--------------------------------------------------------------------------board.RP.tx_usrapp.DATA_STORE[0] = 8'h64;board.RP.tx_usrapp.DATA_STORE[1] = 8'h63;board.RP.tx_usrapp.DATA_STORE[2] = 8'h62;board.RP.tx_usrapp.DATA_STORE[3] = 8'h61;board.RP.tx_usrapp.TSK_TX_MEMORY_WRITE_64(board.RP.tx_usrapp.DEFAULT_TAG,board.RP.tx_usrapp.DEFAULT_TC, 10'd1,{board.RP.tx_usrapp.BAR_INIT_P_BAR[board.RP.tx_usrapp.ii+1][31:0],board.RP.tx_usrapp.BAR_INIT_P_BAR[board.RP.tx_usrapp.ii][31:0]+8'h20}, 4'h0, 4'hF, 1'b0);board.RP.tx_usrapp.TSK_TX_CLK_EAT(10);board.RP.tx_usrapp.DEFAULT_TAG = board.RP.tx_usrapp.DEFAULT_TAG + 1;//--------------------------------------------------------------------------// Event : Memory Read 64 bit TLP//--------------------------------------------------------------------------// make sure P_READ_DATA has known initial valueboard.RP.tx_usrapp.P_READ_DATA = 32'hffff_ffff;forkboard.RP.tx_usrapp.TSK_TX_MEMORY_READ_64(board.RP.tx_usrapp.DEFAULT_TAG,board.RP.tx_usrapp.DEFAULT_TC, 10'd1,{board.RP.tx_usrapp.BAR_INIT_P_BAR[board.RP.tx_usrapp.ii+1][31:0],board.RP.tx_usrapp.BAR_INIT_P_BAR[board.RP.tx_usrapp.ii][31:0]+8'h20}, 4'h0, 4'hF);board.RP.tx_usrapp.TSK_WAIT_FOR_READ_DATA;joinif (board.RP.tx_usrapp.P_READ_DATA != {board.RP.tx_usrapp.DATA_STORE[3],board.RP.tx_usrapp.DATA_STORE[2], board.RP.tx_usrapp.DATA_STORE[1],board.RP.tx_usrapp.DATA_STORE[0] })begin$display("[%t] : Test FAILED --- Data Error Mismatch, Write Data %x != Read Data %x",$realtime, {board.RP.tx_usrapp.DATA_STORE[3],board.RP.tx_usrapp.DATA_STORE[2], board.RP.tx_usrapp.DATA_STORE[1],board.RP.tx_usrapp.DATA_STORE[0]}, board.RP.tx_usrapp.P_READ_DATA);test_failed_flag = 1;endelsebegin$display("[%t] : Test PASSED --- Write Data: %x successfully received",$realtime, board.RP.tx_usrapp.P_READ_DATA);endboard.RP.tx_usrapp.TSK_TX_CLK_EAT(10);board.RP.tx_usrapp.DEFAULT_TAG = board.RP.tx_usrapp.DEFAULT_TAG + 1;enddefault : $display("Error case in usrapp_tx\n");endcaseend$display("[%t] : Finished transmission of PCI-Express TLPs", $realtime);if (!test_failed_flag) begin$display ("Test Completed Successfully");end$finish;end

board.RP.tx_usrapp.TSK_SIMULATION_TIMEOUT(10050);


这一句设置了仿真推出的时间

board.RP.tx_usrapp.TSK_SYSTEM_INITIALIZATION;

这个函数让测试程序等待系统复位被释放,同时endpoint的trn_lnk_up_n信号被置位。这样就表示endpoint已经准备好通过DS端口模型被测试程序配置。

board.RP.tx_usrapp.TSK_BAR_INIT;

执行一系列对endpoint核PCI配置空间进行Type0 配置写和读,确认endpoint的存储器和IO需求,然后对endpoint的基地址寄存器(BARs)进行编程,这样确保可以从DS端口模型介绍TLP。

其实BARs空间初始化任务里同时调用了其它几个任务子程序:
 /************************************************************ Task : TSK_BAR_INIT Inputs : None Outputs : None Description : Initialize PCI core based on core's configuration. *************************************************************/ task TSK_BAR_INIT; begin TSK_BAR_SCAN; TSK_BUILD_PCIE_MAP; TSK_DISPLAY_PCIE_MAP; TSK_BAR_PROGRAM; end endtask // TSK_BAR_INIT
首先我们来看子程序TSK_BAR_SCAN,该子程序对6个Bar和一个扩展ROM Bar通过Type0配置读写进行配置,下面列出了BAR0的配置读写:
 // Determine Range for BAR0 TSK_TX_TYPE0_CONFIGURATION_WRITE(DEFAULT_TAG, 12'h10, P_ADDRESS_MASK, 4'hF); DEFAULT_TAG = DEFAULT_TAG + 1; TSK_TX_CLK_EAT(100); // Read BAR0 Range TSK_TX_TYPE0_CONFIGURATION_READ(DEFAULT_TAG, 12'h10, 4'hF); DEFAULT_TAG = DEFAULT_TAG + 1; TSK_WAIT_FOR_READ_DATA; BAR_INIT_P_BAR_RANGE[0] = P_READ_DATA;
具体仿真结果是:

图3:TSK_TX_SYNCHRONIZE

这个子程序的主要功能是同步trn_clk和trn_tdst_rdy_n信号。当一个TLP被发送之前,必须等待trn_clk的上升沿和trn_tdst_rdy_n被置位。在这个子程序之中调用了子程序TSK_READ_DATA_128和TSK_PARSE_FRAME,主要用意是输出log信息到tx.dat文件中。


作者:coyoo, 来源:面包板社区链接:https://www.mianbaoban.cn/blog/uid-me-1010859.html版权声明:本文为博主原创,未经本人允许,禁止转载!


↓↓ 点击"阅读原文"申请试读 ↓↓


------------------------

与工程师一起改变世

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 117浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 421浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 619浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 140浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 145浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 209浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 60浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 189浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 158浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 116浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 297浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 187浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦