消费电子领域最火热的生物传感器

面包板社区 2019-08-13 17:00


生物识别一词起源于希腊单词“bio”(生命)和“metric”(计量)。自人类文明出现以来,人脸就被用于鉴定身份。但是,直到苹果公司于2013年发布内置指纹识别功能的iPhone 5S后,生物识别才真正成为应用于大众市场的主流技术。因此,该趋势也使得指纹识别传感市场规模在2017年底达到了35亿美元。


如果将指纹识别称之为生物识别技术的“第一波”浪潮,那么,生物识别的“第二波”浪潮同样由苹果公司引领,2017年9月推出的iPhone X为消费类应用的3D传感设定了技术和用例标准,并有望驱动生物识别市场在2022年之前达到170亿美元。


当然,生物识别不仅仅包含指纹或人脸识别,声音、步态、耳形、甚至体味都可作为一种生物识别手段来验证身份,在阿里达摩院发布的2019十大科技趋势中,“数字身份成为第二张身份证”赫然在列。未来,从手机解锁、小区门禁到餐厅吃饭、超市收银,再到高铁进站、机场安检以及医院看病,靠身体密码走遍天下的时代正在加速到来,而传感器则在其中扮演着重要的角色。



屏下指纹的三代进化


目前中国的一线手机品牌、包括华为、OPPO、小米、vivo都推出了基于光学指纹方案的产品,比如华为Mate 20系列、OPPO R17系列、小米8屏幕指纹版、vivo NEX等。


光学屏下指纹识别的方法,是利用屏幕照亮手指,随后手指的成像透过OLED屏幕的小孔,被屏幕下方的光学传感器所感知,进而比对识别。


从已经商用的方案来看,光学屏下指纹的演进经历了三代。第一代是基于CMOS传感器的小孔阵列准直方案。这种结构下,来自指纹的光线通过盖板玻璃和OLED层之后进入准直层,进而过滤掉折射和散射光线,到达感光元件的光线便是准直光,得到相对清晰的指纹图像,最终识别指纹。


第二代则是目前应用更为普遍的镜头式方案。这一方案的本质是在屏幕下方加装摄像头,通过给手指拍照的方式来记录和比对指纹信息。这也是为什么我们在点击屏幕指纹区域的时候,识别区域的亮度会大幅提升,因为需要给手指拍照加个闪光灯。


众所周知,手机指纹识别区域面积想要多大,就得采用同尺寸的指纹传感器,由于两代方案都采用了CMOS传感器,如果要做成区域甚至全屏指纹识别,价格将非常昂贵。我们可以做一道简单的数学题:要做一个尺寸100mm x 75mm(面积约等于3个36×24全画幅)左右的全屏指纹方案,以一片晶圆(4000美金)切割出36个全画幅传感器为标准,只能做12个全屏指纹传感器,每一颗传感器的总成本将高达300-400美元。


因此,第三代方案应运而生,其目的就是为了解决在增大识别面积的同时,有效地控制成本。第三代方案在结构上与第一代类似,但是将CMOS传感器换成了膜光学指纹传感器(TFT),极大的降低了成本。


目前,OPPO、小米、vivo等厂商均有类似技术。OPPO的做法是将一个位于手机中下部的区域位置定义为“黄金识别区域”,其有效识别区域达到了目前主流光学方案的15倍,用户点按整个区域内的任意位置都可以通过指纹解锁或支付。


OPPO方面解释说,他们发现多数用户在拿起手机进行指纹解锁的时候,都是通过单手,用虎口和小拇指分别托住手机的下部,伸出大拇指按压,然后解锁。因此,找到并定义一个舒适的单手操作区域位置,能很好地适应用户本能的握持和操作习惯。此外,更大区域还让OPPO可以支持独特的“黑屏盲操作”、双指同时录入与认证、以及“光域加密”功能。

双指解锁功能在提升安全性方面也具备比较大的潜力,OPPO表示这种提升将是“指数级”的。实际上,Synaptics曾在2017年推出过类似理念的产品,称之为“多重生物特征识别融合引擎”,通过组合“指纹+面部”两个生物特征来实现双重保险。但相比于指纹,通过前置摄像头完成的2D人脸识别天生安全性比较低,采用3D面部识别+指纹组合,安全性会更高,也是目前智能手机的主流配置。


小米屏下指纹方案比较突出的特性是一键录入和大范围盲解。与传统指纹录入需要十次左右的情况不同,小米只需按一下就可以完成录入,其屏幕指纹解锁面积达25mm x 50.2mm。但录入指纹这个场景,用户在使用一款手机的时候基本只会操作一次,以目前2年左右的换机周期来说,用户很可能在2年内只会录入一次指纹,因此这个功能在可拓展性上还有待挖掘。


vivo抛出的全屏指纹概念更高调。它是指在目前区域指纹的基础上进一步扩大识别面积,赋予用户更大的灵活度和便捷性,用户在完全盲操作的情况下也能实现解锁,比如从口袋掏出手机的同时,只要手指接触屏幕就能解锁。与光域指纹类似,全屏指纹可以支持双指、甚至三指或四指录入与识别,将安全性推向了极致。


全屏指纹在用户体验上来看应该是未来的发展方向。但TFT传感器在手机产业中仍然属于未规模化的新技术,虽然与CMOS传感器相比极大的降低了成本,但是传感器面积的增加依然会带来成本的提高。不过,随着技术的规模化普及,全屏指纹方案的成本必然会降低,毕竟所有技术都有着相似的历史发展轨迹。TrendForce旗下拓墣产业研究院报告就曾指出,2017年Synaptics的光学屏下指纹识别成本尚需要12-15美元,但随着汇顶、思立微等厂商的加入,2019年成本将有机会下降至8美元以下。


此外,手机内部空间的平衡则是让人更感兴趣的挑战。手机内部寸土寸金,伴随着5G时代的到来,手机内部还要在已有的4G通讯模组基础上增加5G元器件,手机厂商可能会选择增加机身厚度或者减小电池容量的形式来寻求空间。例如苹果就在厚度上做出了一定的妥协,从iPhone X开始,苹果将主板做成了双层,也将电池设计成L型排布。


与本土手机厂商的选择不同,三星为最新旗舰手机Galaxy S10系列选择的是Qualcomm 3D声波传感器。Qualcomm 3D声波传感器的厚度不到0.2毫米,基本工作原理是通过向手指发射超声波脉冲,创建详细的指纹三维结构图,从而读取手指的沟纹和脊线数据,取代了用二维感光技术读取指纹的传统方案。此外,由于能够检测到手指内的血液流动,该传感器在心率监测、BMI测量和血糖水平分析等应用中也得到了广泛使用。


这家芯片巨头在2016年随着骁龙820的发布,推出了Sense ID超声波方案。2017年,推出了更新版的超声波方案Qualcomm Fingerprint Sensors,在前代基础上实现全新增强特性,包括面向显示屏、玻璃和金属的传感器、定向手势检测、水下指纹匹配和设备唤醒。


Qualcomm方面认为其3D声波传感器轻巧的设计可以使之完全“隐藏”在手机屏幕下,实现无按钮的终端设计,从而为用户带来更加轻薄、屏幕占比更大的智能终端。此外,由于它还可以检测到手指内的血液流动,并且在各种环境下,哪怕是手指潮湿或脏污,都能有效识别指纹,因而大幅提升了指纹识别的安全性、准确性和灵活性。


方兴未艾的3D传感


根据咨询机构Yole Développement的预测,受益于消费电子市场可预见的爆发式增长,3D成像与传感的市场规模将从2016年的13亿美元增长至2022年的90亿美元,其中用于消费电子的3D成像与传感市场将从2016年的2000万美元增长至2022年的60.58亿美元,复合年均增长率(CAGR)达到158%。



2011-2022年全球3D成像与传感市场收入预测


而作为3D深度视觉领域三大主流方案之一,飞行时间(ToF, Time of Flight)技术在过去的一年里除了频频出现在各大旗舰手机产品中外,还在VR/AR手势交互、汽车电子ADAS、安防监控以及新零售等多个领域大显身手,应用前景十分广阔。


“ToF技术跟3D激光传感器原理基本类似,只不过3D激光传感器是逐点扫描,而ToF相机则是同时得到整幅图像的深度信息。”ADI系统应用工程经理李佳解释说,这就好比是ToF镜头发射出了一整面平整的“光墙”,这面光墙打到物体表面发生了形变并带着3D信息反射回来,根据激光往返的时间长短和其固定的飞行速度,就能计算出物体表面上的点与手机之间的距离。当发射的激光足够多时,就可以触达物体表面的每一个点,当所有的点连成一个3D立体面时,我们就能获得物体的形状信息。


相比3D深度视觉的其它两种方案,李佳认为ToF方案的优势之一在于画面拍摄后计算景深时不需要进行后处理,既可避免延迟又可节省采用强大后处理系统带来的相关成本。同时,ToF测距规模弹性大,大多数情况下只需改变光源强度、光学视野以及发射器脉冲频率即可完成。



主流3D视觉方案对比


因此,随着体感交互与控制、3D物体识别与感知、智能环境感知以及动态地图构建等技术与市场的发展,具有不易受外界光干扰、体积小巧、响应速度快以及识别精度高等多重优势的ToF技术,开始在移动端和汽车电子领域崭露头角。


在李佳看来,手机后置摄像头、VR/AR手势交互、环境测量等应用在技术层面上面临的性能挑战难度通常要更小一些,关注重点主要集中在低成本、低功耗和小尺寸等方面,对于测量速度、寿命和分辨率等方面的要求并不强烈。但对于汽车、工业等专业级场景来说,ToF传感系统的设计不仅需要在精度、范围、响应时间、分辨率、成本、功耗、封装之间取得平衡,还需要针对不同情况中出现的各种不可控因素、传感系统的灵活性与抗干扰性等方面进行定制化的冗余设计,比如添加一些高可靠性的滤波和抗干扰器件/模块,并加载相关的软件算法,从而保证系统有足够的能力去应对不同类型的突发状况。


以汽车应用为例,目前市场上的倒车雷达只能感应是否有障碍物,但一些“身材”矮小的障碍物就达不到感应范围的要求。如果采用ToF技术,倒车系统就可以同时侦测多个不同距离的行人或障碍物,当有行人或者障碍物靠近时,就算是视线死角车顶的树枝,透过软件处理后,也能以影像或声音警示距离,以帮助驾驶人员了解车后相关路况。


在智能建筑领域,以具备人脸识别的ToF 3D立体影像自动门解决方案为例,传统自动门采用红外线反射原理,只能检测到是否有物体出现在感测范围,导致动物也能自由进出商场,造成了管理上的困扰。基于ToF的方案则可识别空间中的人类特征以及人与物体相对位置距离,避免非人类进入商场。此外,商业空间的3D人流自动统计过去有成熟方案,但如何有效利用影像技术,以最低的成本精准分辨进出者的身高、体重、出入时间和低于1%的高度误差,就有相当的技术门槛了。


除了完成物体的3D深度拍照外,ToF技术在工业领域还能为机器人带来视觉效应,使之能像人类一样具有方向感。


“在人类与机器人的合作问题上,安全性永远是要考虑的首要问题,尤其是当机器人身处较为拥挤的工作环境中,它们必须能辨认人与机械的动作,并做出迅速的反应以避免受伤。”李佳说,如果用激光雷达来解决机器人自主避障问题,成本需要增加数万元;用双摄像头方案,需要大量的运算和双摄像头精准位置的调教。相比之下,ToF则成为解决上述难题的极具性价比的最佳选择。


ADDI903x系列是ADI CCD ToF方案的核心器件之一,支持CCD红外光ToF传感器,分辨率可达640x480。李佳认为,与CMOS解决方案相比,以松下公司CCD传感器和ADI ADDI903x为核心的系统级ToF解决方案,在同样的尺寸和成本下能提供更高的系统性能。比如高解析度,在光线复杂的环境中可以更好的区分主体与背景。同时,得益于松下针对940nm发光波段而设计的CCD架构,可以更精确的捕捉运动环境中的画面。


TWS耳机,请主动降噪


如今,越来越多的手机开始取消3.5mm耳机接口,转而采用USB-C接口耳机或是无线蓝牙耳机,但消费者对音乐分辨率的要求却始终有增无减。一项调查显示,音质已成为消费者选择耳机或音箱产品时最看重的因素,76%的受访者为此投了赞成票,79%的受访者期待高分辨率的音频,并愿意为此支付更高的费用。


而在苹果AirPods的示范效应下,真无线立体声(TWS)耳机作为移动互联网入口的潜质逐步显现,亚马逊、谷歌、微软、华为等各路巨头纷纷布局抢占市场。调研数据称,2018年至2023年间,无线耳机市场的复合年增率将高达39%,而具备主动降噪(ANC)功能的无线耳机增幅更是惊人,达到了150%。



无线耳机市场潜力巨大


但市场快速增长的同时,大多数采用被动降噪的半入耳式无线耳机由于结构本身限制,使噪声更容易刺激耳朵,成为了市场普遍痛点。这是因为传统耳机的被动降噪单纯的利用耳机耳罩物理结构设计来减少外界声音的进入,而主动降噪则利用了声波干涉的现象,通过主动发射与外界噪音振幅相同的反相位声波,从而使得两者相互抵消,以达到降噪的效果。


艾迈斯半导体(ams)耳机与汽车传感器部门无线耳塞解决方案营销经理Christian Feierl在接受《电子工程专辑》采访时表示,由于半入耳式耳塞佩戴方式相对松散,会导致外部噪音大量进入耳内,所以目前来看,基于半入耳式耳机的主动降噪方案还比较罕见。另一方面,如果要在半入耳式耳塞中加入主动降噪系统,就需要实时检测佩戴情况,通过算法优化以匹配最优模式,这对芯片的运算能力和功耗表现提出了更高的要求。



Christian Feierl,ams耳机与汽车传感器部门的无线耳塞解决方案营销经理


ams此前的主动降噪方案大多基于模拟电路,需要搭建复杂的电阻电容生成噪声滤波电路。但2016年,通过收购英国Incus Laoratories公司,ams获得了数字主动降噪技术,并将其运用在最新推出的数字增强听觉方案AS3460上。


将ANC滤波器运行在数字处理器中有多种好处。首先是小巧而灵活,正如前文所述,数字主动降噪技术无需过多外围器件,能够针对不同环境自适应的切换滤波器,或者将周围环境的声音直接送入耳机,也可以与蓝牙通信设备等进行数字接口通信。其次,数字方案可以在芯片内部快速调整滤波电路并立即投入验证,开发速度更快;第三,数字降噪技术免去了过往需要人工手动完成的校准过程,优化了流程。但与此同时,功耗和数字系统更高的延迟也不可忽视,设计者必须要在多种因素间找到平衡点。


Christian Feierl说围绕耳机的生态创新是一盘大棋。除了AS3460,他们还在无线耳塞最优布局布线参考设计中增加了数字MEMS麦克风和接近光传感器。未来,还可以在耳塞内植入其他传感器,比如用于检测耳塞插入的接近传感器、加速度传感器、健身器材用的心率传感器、温度传感器,以及触控传感器,从而使摘下耳机暂停音乐、上下滑动增减音量、血压/心率检测等功能变得触手可及。


结语


不同的生物识别技术在精度、稳定性、识别速度、便捷性方面有着各自不同的特点和优劣势,未来,多重生物识别技术融合必将成为趋势。Technavio提供的数据也印证了这一判断,未来5年,全球多重识别市场的规模将会保持20%以上的增长速度,而采用双重识别技术的应用占比将超过90%,目前在智能手机中广泛采用的指纹识别+3D人脸识别组合即为最好例证。


本文为EET电子工程专辑 原创文章,禁止转载。


经典试读《精通开关电源(第3版)》—— 请点击文末阅读原文



↓↓ 点击图片参与活动 ↓↓


------------------------

与工程师一起改变世

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论 (0)
  • 在这个AI技术日新月异的时代,人工智能(AI)已经逐渐渗透到我们生活的方方面面,从工作到学习,从娱乐到医疗,AI都在以其独特的方式改变着我们的世界。作为一名计算机专业的大学老师,我近期有幸阅读了《AI帮你赢:人人都能用的AI方法论》一书,深感这本书不仅为专业人士提供了宝贵的AI使用技巧,更为广大学生打开了一扇通往AI世界的大门。 《AI帮你赢》一书于2024年12月正式出版,也是紧跟时代发展的一本书,最新的日期。这本书以通俗易懂的语言,系统地阐述了人工智能的核心理念、应用场景及实践方法
    curton 2025-04-16 21:47 102浏览
  • 一、引言:健康管理数字化浪潮下的血压监测转型在慢性病高发与老龄化加剧的双重压力下,家庭健康监测设备正从“被动测量工具”向“主动健康管家”演进。传统血压计虽能提供基础数值,却无法解决用户的核心痛点:数据如何解读?异常如何干预?风险如何预防?WT2605C芯片方案的诞生,通过“AI对话+云端互联+个性化服务”三重技术突破,重新定义了血压计的价值边界——它不仅是一台测量仪器,更是一个全天候在线的健康管理生态系统。二、传统血压计的局限与用户需求升级1. 功能单一性困境数据孤岛:仅显示收缩压/舒张压数值,
    广州唯创电子 2025-04-16 08:55 152浏览
  • 4月15日,京东全球购迎来十周年生日。为了回馈广大用户十年来的支持与信赖,早在4月初,京东全球购就已率先开启十周年庆典活动,为消费者带来了一场消费盛宴。来自全球各地的进口好物,以全场进口大牌1元抢、爆品低至5折、跨店每满200减30的优惠价格被呈现在消费者面前。同时,在迎来十周年庆典之际,京东全球购还宣布,未来一年,将投入亿级资源,升级四大商家扶持举措,包括提供仓配和流量等多项补贴,推出扶持新品、新商家等举措,助力更多进口商家降本提效,在京东获得可持续、高质量成长。十年如一日 打造跨境购物首选平
    华尔街科技眼 2025-04-16 16:18 122浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 161浏览
  •   网络链路攻防战术对抗仿真系统软件深度剖析   一、系统概览   北京华盛恒辉网络链路攻防战术对抗仿真系统软件,是专为网络安全领域攻防对抗需求打造的高仿真平台。它模拟真实网络环境中的攻、防行为,为安全研究人员以及红队、蓝队提供实战训练和策略验证工具。该系统以动态仿真技术为核心,融合人工智能与大数据分析,实现攻防战术的自动推演与可视化展示 。   应用案例   目前,已有多个网络链路攻防战术对抗仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润网络链路攻防战术对抗仿
    华盛恒辉l58ll334744 2025-04-16 14:42 97浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 253浏览
  •   水下装备体系论证系统软件全面解析   一、系统概述   水下装备体系论证系统软件是针对水下作战、资源勘探、海洋工程等需求,专门设计的信息化论证工具。该系统通过集成建模、仿真、优化等技术,对水下装备体系的使命任务、环境适应性、技术参数、作战效能等进行全流程分析,为装备体系设计、方案权衡和决策提供科学依据。   应用案例   目前,已有多个水下装备体系论证系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润水下装备体系论证系统。这些成功案例为水下装备体系论证系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-16 17:03 160浏览
  • 瑞芯微电子(Rockchip)是国内领先的AIoT SoC设计制造企业,专注于智能应用处理器及周边配套芯片的研发。飞凌嵌入式作为瑞芯微的战略合作伙伴,已基于瑞芯微RK3399、RK3568、RK3588、RK3576、RK3562和RK3506系列处理器推出了多款嵌入式主控产品,包括核心板、开发板和工控机,这些产品已成功帮助数千家企业客户完成了项目的快速开发和落地。本文将系统地梳理飞凌嵌入式RK平台主控产品在开发过程中常用的命令,助力更多开发者快速掌握RK系列芯片的开发方法。01、查看CPU温度
    飞凌嵌入式 2025-04-16 15:50 175浏览
  • 2025年4月13日(中国武汉)——在全球经济分化与地缘政治不确定性加剧的背景下,科技与金融的深度融合已成为推动创新与繁荣的关键动力。为实现科技创新、产业进步和金融发展有机结合,发挥金融对科技创新和产业进步的支持作用,国际金融论坛(IFF)科技金融委员会启动大会暨首届科技金融圆桌会议于4月13日在湖北省武汉市武汉产业创新发展研究院成功举行。同时,IFF科技金融委员会由国际金融论坛IFF与武创院联合成立。本次大会汇聚了来自政府、产业与学术研究机构及金融等多领域的精英,共同探讨科技金融如何更好地服务
    华尔街科技眼 2025-04-15 20:53 105浏览
  • 一、引言:智能化趋势下的学爬玩具开发挑战随着早教理念的普及,学爬玩具作为婴幼儿早期运动能力开发的重要工具,市场需求持续增长。然而,传统学爬玩具开发面临多重挑战:需集成红外遥控、语音交互、电机控制等多模块,开发周期长、硬件成本高;复杂的红外编解码与语音功能实现依赖工程师深度参与,技术门槛陡增。如何以更低成本、更快速度打造差异化产品,成为行业亟待解决的痛点。二、传统开发模式痛点分析硬件冗余红外接收模块、语音芯片、主控MCU分立设计,导致PCB面积增加,BOM成本攀升。开发周期长需工程师独立完成红外协
    广州唯创电子 2025-04-16 08:40 151浏览
  • 多极电磁铁的核心应用领域一、工业制造领域1.‌磁性材料处理‌:用于多极磁环充磁,通过四极、六极或八极磁场设计,使磁环获得均匀或梯度分布的磁性能,提升电机、传感器等设备的效率‌。在电子束焊接中控制电子束的聚焦和偏转,增强焊接精度(如精密电子元件加工)‌。2.‌机械控制与自动化‌应用于旋转磁场导向系统,优化工业机器人、自动化产线中磁性物料的传输路径。配合电磁吸盘用于起重设备,实现对金属部件的快速吸附与释放,提高搬运效率。二、科研实验领域1.‌物理与材料研究‌在实验室中生成径向梯度磁场或均匀磁场,用于
    锦正茂科技 2025-04-16 09:39 86浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 338浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 139浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 291浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 210浏览
我要评论
0
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦