智能制造,是如何解决晶圆生产中的问题的?

面包板社区 2019-08-14 17:00


在聊到工业4.0、智慧工厂、智能制造、IIoT的时候,除了研讨会、论坛以及文字资料,实际真正重要的是“落地”,唯有落地才能真正解决生产问题。我们在听到很多有关工业4.0的美好规划时,又有多少内容是已经能够真正实现,应用到生产一线的?


BISTel 中国区销售总监Stanley Shi在接受我们的采访时,举了一个具体的例子:在半导体制造CVD(化学气象沉积)流程中,根据HMP(Health Monitoring & Prediction)的追踪数据,发现某晶圆厂在生产的4月18日出现异常高的报警数,很多晶圆受到了影响。“TDS”设备某节气阀确定发生位置偏移。



而实际上,这个问题是有办法通过智能应用事先预知,或提前获取到异常信息的。BISTel HMP智能应用实际早在4月16日就侦测到了节气阀位置首次发生潜在漂移,这就给出了两天的提前量。




实际在监测的其他参数方面,更早就有征兆显现:前序压力由于节气阀的位置偏移,4月8日就发现了“第一个不规则现象”,漂移趋势当时就开始上行。



这个例子,即是HMP通过生产设备的监测,来提前发现参数偏移趋势,做到更早预知生产问题。对工厂而言,这种具体的应用是为了减少非计划性停机、提升资产利用率,并且降低维护成本,降低设备的downtime。类似HMP的这种已经落地的应用,简单说来就是对工厂内的设备设施,进行实时的监控、监测,并且进行预测性的分析;在工厂设备看板上,给出预警,算出资产设备寿命。这对生产的价值是不言自明的。


智能制造究竟长什么样?


工业4.0用比较抽象的话来概括,就是生产环节的“数字化”,改变工厂的运营方式,提高生产效率。通过“自动化”和“人工智能”实时地解决生产问题。实现这个目标的重要一环就是IIoT(Industrial Internet of Things),也就是工业生产设备都能够接入网络中,并且产生大量的数据。


Stanley说:“有了这样的新技术,就产生了海量的数据。人们才真正开始意识到数据是存在价值的。”在前不久Aspencore主办的“智”动化与工业4.0论坛苏州场的活动现场,Oracle就提到了智慧工厂的“数据范围”正在发生扩张,“现在的数据范围已经从传统的关节型数据,扩大到了设备端的万物互联,延伸到整个物联网,也就是大数据”。


所以将数据交给谁,还要在正确的时间和位置给出这些数据,最终让数据指导生产。都是实现智能制造的核心所在。实际上,云、大数据以及AI,都为解决这个问题而存在。尤其AI是用于海量数据分析的大趋势,将基于AI的实时监控与数据分析工具,连接到IIoT设备和平台。BISTel尝试解决的,主体上就是这个阶段的问题。


BISTel首席执行官W.K. Choi先前曾将工业4.0分成三部分,或者说三个阶段。前两者关乎IoT设备和工程系统(engineering system),这两者会与智能做融合,达到监测、分析、预测生产挑战的目的。而第三阶段,则是将智能融入到企业中去,构建完整互联的智能工厂生态系统,其中的IoT设备设施、工程与企业级系统都完整互联,实现大数据流、知识库的跨生态系统共享、管理和优化。


第三阶段可以认为是智能制造未来方向的某种共识。不过这么说似乎还是有些虚,在理论层面说得更具体些:如Stanley所说,目前智能制造着力的还在前两个阶段,以BISTel的维度来划分,即智能应用和智能系统。这里的智能应用,也就是应对不同制造场景、部署在工厂中的具体应用,例如前文提到的HMP健康监测与预测维护,再比如应用了AI的DFD动态故障检测、CM新型腔室匹配等。


而智能系统则强调将所有的应用串联起来,构成检测、分析、预测的闭环结构,在闭环形成过程中,借由BISTel本身在智能制造方面的数据经验积累,外加工厂本身产生的数据,去强化闭环的每个环节,并最终做到“自适应”,应用和系统能够“自主地发现、分析和解决问题”。


“所有的应用会共用一个知识库(knowledge base)。这个知识库里面会有所有的知识点、解决方案。当数据越来越多的时候,我们会去通过对接数据进行学习,然后自动去更新、优化。这就是我们所谓的AI自动建模,通过智能的积极学习去自动更新。”


其中这种“自适应”能力强调的是无需或较少人工干预的“自主控制&治愈”“IT与OT深度自动化整合”,自主地完成发现问题-学习问题-采取行动的过程,这属于前述第二阶段智能系统的进一步强化。实现这一步的关键,在BISTel看来自然就在人工智能了。而完整实现这个程度的自适应,还需要时间,也是BISTel乃至更多智能制造解决方案的方向。


根因分析、预测


除了智能应用和智能制造,“第三阶段就是我们后续的蓝图了。将我们的生态系统和工厂内部,所有的其他设备,其他的智能系统连接起来,通过设备乃至系统彼此间的沟通,真正实现自主解决问题。”Stanley说。在我们的理解中,也就是在整个工厂构成更大范围的不同系统、组织间的互通和智能。


Oracle实则也有着类似的蓝图。除了前文提到的“数据范围”的扩展,Oracle资深解决方案架构师Vicky Qiu在“智”动化与工业4.0论坛上还提到“企业现在都是互联的企业,不是孤立的,需要上下游生产商共同合作”。这个理念实际强调的,还将“互联”和“智能”的范围做了进一步的外延。


不过这些可能离我们还略显遥远。现阶段正在落实的,如HMP这样的应用讲究的是获取工厂和设备的追踪数据(tracedata),进行数据分析,并实现“根因分析”与“预测性分析”,实现决策支持。比如说工厂生产了“好的”晶圆,和良率不过关的晶圆,部署数十万传感器,针对数百道工艺步骤做数据追踪,借由AI针对这些数据做“追踪数据”分析,获得分级排序的根因结果,以及进行预测——对设备或生产做预测性维护、基于大数据分析即时优化工作参数、借由模型实现系统和供应商的优化等。


这么说还是太过抽象,Stanley在分享中举了几个例子。首先说一说这里的“根因分析”。


通常在发现晶圆生产不良率高的问题以后,工程师们通常要花很长时间去找问题的根源。如果能够对工厂中的不良品进行归类,追踪这些不良品的所有参数、数据,经过系统分析后得出影响不良品的参数,再按照关联度大小对这些参数进行排序,在短期内找出问题根源,工厂的效率就会提升很多。


在图示的这一例遭遇的晶圆edge patch问题中,出现了6个最优关联度的参数(左下位置)。第一和第二个参数关联性最强,第一个参数是在Etch(蚀刻)这个流程的最后一步,电流发生显著激增;第二个参数,则是氦气值的明显降低。此处,etch流程的最后一步实际上也就是氦气分离,电流激增很可能是分离过程中,托盘与晶圆的边缘接触,产生了小范围的火花,所以这里托盘可能放置不平衡,托盘某些氦气口堵塞造成氦气值降低。这就是追踪数据在半导体制造中一个很好的例子。


BISTel中国区销售总监汪锋补充说:“一般制造行业发生不同的fault时,数据表现都是不一样的,像制造中unbalance轴承的数据曲线会是某一种表现方式,mis-alignment的时候数据又是另外一种表现。通过历史数据的不同表现方式,跟实际的fault,结合起来进行实时分析,系统就能初步判断这可能是什么样的问题。”


除了这种根因分析,借由追踪数据还能实现预测,包括预测维护、工作参数优化、系统/供应链动态优化。比如HMP实现的就是“预测维护(predictive maintenance)”。预测维护的价值在于提高维护效率,减少成本。


汪锋打了个比方:“比如你有一辆车,通常每5000英里需要保养一次,这是基于时间的维护(time-based maintenance),而预测维护则是condition-based,比如我可能会把发动机的转速或者温度数据等等,都结合起来,预测我下一次可能会出现什么问题。这种分析是实时的,可能会告诉你说现在汽车运转良好,一个月以后需要进行一次维护。”


Stanley表示:“固定一个时间,每隔一段时间做维护,可能会造成几个问题,第一是过度维护(over-maintenance),第二是可能我们想到要做维护的时候,问题就可能已经发生了。所以我们需要数据驱动的预测分析(data-driven preditive analysis),实时对关键参数做监测和分析,做到更准确的维护。”


文首提到的案例就是典型的“预测性分析”,这里还是来看两个具体的例子。首先是RUL分析(Remaing Usage Life,剩余使用寿命),上图左侧是生产设备各种参数的实时监控,包括了压力、温度、振动等。根据所有的参数,分析漂移趋势,通过算法就能够了解到当前机器的健康值,并且预测设备寿命。




除了设备健康分析,这类应用实则针对产品也是有分析预测价值的。根据这批晶圆的历史追踪数据,比如质量数据,实时分析在生产过程中每片晶圆所有流程的追踪数据。上图是一个质量看板,浅绿色表示正常且后续健康状况良好;深绿色表示现在是好的,但后续会有风险;黄色表示现在有风险,但短期内不会加剧…依此类推;甚至进行实时的质量分析,给产品健康状况预测打分。这些都是BISTel HMP的典型应用。


HMP解决方案的几个功能特性能够总结上面这些提到的智能制造的特性,包括工厂范围内的实时监控,错误检测,错误分类(Fault Classification,这个环节包含了设备问题的分析,减少排插、修复时间),以及最终的预测分析。“减少非计划停机,提升设备的资产利用率,维护成本降低,自然也就增加了产量。”Stanely说。


与此同时,通过AI来持续改善解决方案的质量,这是BISTel现在正在持续优化的方向。“数据很重要,因为我们需要具备know-how的能力,就是在发生问题时参数数据是什么样的。后续就能通过不断的学习去改善AI模型。”“目前我们的发展蓝图,是集中在人工智能的自我学习、自我完善方面。智能应用本身已经做得很完善了,下一步就是怎么让它去实现自主性,自主学习、自主扩大知识库、自主找出解决方案。”


协力中国制造


在HMP的基础设施部署方面,解决方案的数据库基础设施主体可以是在工厂本地,也可以是在云端。Stanley表示,当前BISTel的案例主要是基于微软Azure。“但未来我们也会跟其他的云合作,比如在中国的腾讯、阿里巴巴,我们未来可能都会合作。”


实际上,HMP只是BISTel诸多智能应用中的其中一例,实则在监测、分析、预测三个环节都有不同的应用。比如前面提到应用于监测环节的DFD,应用于分析环节的CM,HMP在BISTel的智能系统中位处预测环节。这些应用的核心都在助力智能制造。


BISTel目前的业务支柱虽然仍是半导体和面板制造,但业务线已经扩展到了PCB、生物科技、汽车制造及各种非半导体相关领域。或许在整个制造行业也很难找到BISTel智能制造领域的同级竞争对手,汪锋说:“很多厂商都说要去做AI,但很少能看到有真正完整的产品,大家普遍在讲概念。我们在很多行业,已经做过这些预测的解决方案。比如在化工行业、汽车行业、半导体、液晶行业都有实际的案例。甚至包括像是传送设备相关的,底下的马达,通过马达振动来完成预测。”Stanley补充道:“换句话就是落地。”


将智能制造的AI和自动化方案“落地”,大概是BISTel的底气所在。一直以来,BISTel都认为其主要竞争对手实际是企业内部的自己解决方案。但与此同时,BISTel本身也会与制造企业一起,定制化打造共有的定制化解决方案。比如在应对中国制造2025计划时。


“中国制造2025计划,中国期望开发自己的AI技术,并且成为智能制造的No.1。许多中国企业都有自己的需求,想要建立自己的解决方案。所以我们会合作,根据客户需求,在我们产品的基础上,去实现一些产品的共有。”


“比如我们在跟BOE京东方合作,我们和整个京东方集团,基于大数据的下一代分析产品。这个就是基于我们产品的基础之上,我们共同做开发,通过合作去完成大家共有的产品,就是这种方式。”“我们愿意分享最新的技术,共同把中国的智能制造带到新高度。”


本文为EET电子工程专辑 原创文章,禁止转载。


经典试读《精通开关电源(第3版)》—— 请点击文末阅读原文



↓↓ 点击图片参与活动 ↓↓


------------------------

与工程师一起改变世

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论
  • 随着AI大模型训练和推理对计算能力的需求呈指数级增长,AI数据中心的网络带宽需求大幅提升,推动了高速光模块的发展。光模块作为数据中心和高性能计算系统中的关键器件,主要用于提供高速和大容量的数据传输服务。 光模块提升带宽的方法有两种:1)提高每个通道的比特速率,如直接提升波特率,或者保持波特率不变,使用复杂的调制解调方式(如PAM4);2)增加通道数,如提升并行光纤数量,或采用波分复用(CWDM、LWDM)。按照传输模式,光模块可分为并行和波分两种类型,其中并行方案主要应用在中短距传输场景中成本
    hycsystembella 2025-01-25 17:24 475浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 465浏览
  • 书接上回:【2022年终总结】阳光总在风雨后,启航2023-面包板社区  https://mbb.eet-china.com/blog/468701-438244.html 总结2019,松山湖有个欧洲小镇-面包板社区  https://mbb.eet-china.com/blog/468701-413397.html        2025年该是总结下2024年的喜怒哀乐,有个好的开始,才能更好的面对2025年即将
    liweicheng 2025-01-24 23:18 351浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 496浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 295浏览
  • 项目展示①正面、反面②左侧、右侧项目源码:https://mbb.eet-china.com/download/316656.html前言为什么想到要做这个小玩意呢,作为一个死宅,懒得看手机,但又想要抬头就能看见时间和天气信息,于是就做个这么个小东西,放在示波器上面正好(示波器外壳有个小槽,刚好可以卡住)功能主要有,获取国家气象局的天气信息,还有实时的温湿度,主控采用ESP32,所以后续还可以开放更多奇奇怪怪的功能,比如油价信息、股票信息之类的,反正能联网可操作性就大多了原理图、PCB、面板设计
    小恶魔owo 2025-01-25 22:09 622浏览
  • 不让汽车专美于前,近年来哈雷(Harley-Davidson)和本田(Honda)等大型重型机车大厂的旗下车款皆已陆续配备车载娱乐系统与语音助理,在路上也有越来越多的普通机车车主开始使用安全帽麦克风,在骑车时透过蓝牙连线执行语音搜寻地点导航、音乐播放控制或免持拨打接听电话等各种「机车语音助理」功能。客户背景与面临的挑战以本次分享的客户个案为例,该客户是一个跨国车用语音软件供货商,过往是与车厂合作开发前装车机为主,且有着多年的「汽车语音助理」产品经验。由于客户这次是首度跨足「机车语音助理」产品,因
    百佳泰测试实验室 2025-01-24 17:00 197浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 324浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 1230浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 241浏览
  • 前篇文章中『服务器散热效能不佳有解吗?』提到气冷式的服务器其散热效能对于系统稳定度是非常重要的关键因素,同时也说明了百佳泰对于散热效能能提供的协助与服务。本篇将为您延伸说明我们如何进行评估,同时也会举例在测试过程中发现的问题及改善后的数据。AI服务器的散热架构三大重点:GPU导风罩:尝试不同的GPU导风罩架构,用以集中服务器进风量,加强对GPU的降温效果。GPU托盘:改动GPU托盘架构,验证出风面积大小对GPU散热的影想程度。CPU导风罩:尝试封闭CPU导风罩间隙,集中风流,验证CPU降温效果。
    百佳泰测试实验室 2025-01-24 16:58 192浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 995浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦