智能制造,是如何解决晶圆生产中的问题的?

面包板社区 2019-08-14 17:00


在聊到工业4.0、智慧工厂、智能制造、IIoT的时候,除了研讨会、论坛以及文字资料,实际真正重要的是“落地”,唯有落地才能真正解决生产问题。我们在听到很多有关工业4.0的美好规划时,又有多少内容是已经能够真正实现,应用到生产一线的?


BISTel 中国区销售总监Stanley Shi在接受我们的采访时,举了一个具体的例子:在半导体制造CVD(化学气象沉积)流程中,根据HMP(Health Monitoring & Prediction)的追踪数据,发现某晶圆厂在生产的4月18日出现异常高的报警数,很多晶圆受到了影响。“TDS”设备某节气阀确定发生位置偏移。



而实际上,这个问题是有办法通过智能应用事先预知,或提前获取到异常信息的。BISTel HMP智能应用实际早在4月16日就侦测到了节气阀位置首次发生潜在漂移,这就给出了两天的提前量。




实际在监测的其他参数方面,更早就有征兆显现:前序压力由于节气阀的位置偏移,4月8日就发现了“第一个不规则现象”,漂移趋势当时就开始上行。



这个例子,即是HMP通过生产设备的监测,来提前发现参数偏移趋势,做到更早预知生产问题。对工厂而言,这种具体的应用是为了减少非计划性停机、提升资产利用率,并且降低维护成本,降低设备的downtime。类似HMP的这种已经落地的应用,简单说来就是对工厂内的设备设施,进行实时的监控、监测,并且进行预测性的分析;在工厂设备看板上,给出预警,算出资产设备寿命。这对生产的价值是不言自明的。


智能制造究竟长什么样?


工业4.0用比较抽象的话来概括,就是生产环节的“数字化”,改变工厂的运营方式,提高生产效率。通过“自动化”和“人工智能”实时地解决生产问题。实现这个目标的重要一环就是IIoT(Industrial Internet of Things),也就是工业生产设备都能够接入网络中,并且产生大量的数据。


Stanley说:“有了这样的新技术,就产生了海量的数据。人们才真正开始意识到数据是存在价值的。”在前不久Aspencore主办的“智”动化与工业4.0论坛苏州场的活动现场,Oracle就提到了智慧工厂的“数据范围”正在发生扩张,“现在的数据范围已经从传统的关节型数据,扩大到了设备端的万物互联,延伸到整个物联网,也就是大数据”。


所以将数据交给谁,还要在正确的时间和位置给出这些数据,最终让数据指导生产。都是实现智能制造的核心所在。实际上,云、大数据以及AI,都为解决这个问题而存在。尤其AI是用于海量数据分析的大趋势,将基于AI的实时监控与数据分析工具,连接到IIoT设备和平台。BISTel尝试解决的,主体上就是这个阶段的问题。


BISTel首席执行官W.K. Choi先前曾将工业4.0分成三部分,或者说三个阶段。前两者关乎IoT设备和工程系统(engineering system),这两者会与智能做融合,达到监测、分析、预测生产挑战的目的。而第三阶段,则是将智能融入到企业中去,构建完整互联的智能工厂生态系统,其中的IoT设备设施、工程与企业级系统都完整互联,实现大数据流、知识库的跨生态系统共享、管理和优化。


第三阶段可以认为是智能制造未来方向的某种共识。不过这么说似乎还是有些虚,在理论层面说得更具体些:如Stanley所说,目前智能制造着力的还在前两个阶段,以BISTel的维度来划分,即智能应用和智能系统。这里的智能应用,也就是应对不同制造场景、部署在工厂中的具体应用,例如前文提到的HMP健康监测与预测维护,再比如应用了AI的DFD动态故障检测、CM新型腔室匹配等。


而智能系统则强调将所有的应用串联起来,构成检测、分析、预测的闭环结构,在闭环形成过程中,借由BISTel本身在智能制造方面的数据经验积累,外加工厂本身产生的数据,去强化闭环的每个环节,并最终做到“自适应”,应用和系统能够“自主地发现、分析和解决问题”。


“所有的应用会共用一个知识库(knowledge base)。这个知识库里面会有所有的知识点、解决方案。当数据越来越多的时候,我们会去通过对接数据进行学习,然后自动去更新、优化。这就是我们所谓的AI自动建模,通过智能的积极学习去自动更新。”


其中这种“自适应”能力强调的是无需或较少人工干预的“自主控制&治愈”“IT与OT深度自动化整合”,自主地完成发现问题-学习问题-采取行动的过程,这属于前述第二阶段智能系统的进一步强化。实现这一步的关键,在BISTel看来自然就在人工智能了。而完整实现这个程度的自适应,还需要时间,也是BISTel乃至更多智能制造解决方案的方向。


根因分析、预测


除了智能应用和智能制造,“第三阶段就是我们后续的蓝图了。将我们的生态系统和工厂内部,所有的其他设备,其他的智能系统连接起来,通过设备乃至系统彼此间的沟通,真正实现自主解决问题。”Stanley说。在我们的理解中,也就是在整个工厂构成更大范围的不同系统、组织间的互通和智能。


Oracle实则也有着类似的蓝图。除了前文提到的“数据范围”的扩展,Oracle资深解决方案架构师Vicky Qiu在“智”动化与工业4.0论坛上还提到“企业现在都是互联的企业,不是孤立的,需要上下游生产商共同合作”。这个理念实际强调的,还将“互联”和“智能”的范围做了进一步的外延。


不过这些可能离我们还略显遥远。现阶段正在落实的,如HMP这样的应用讲究的是获取工厂和设备的追踪数据(tracedata),进行数据分析,并实现“根因分析”与“预测性分析”,实现决策支持。比如说工厂生产了“好的”晶圆,和良率不过关的晶圆,部署数十万传感器,针对数百道工艺步骤做数据追踪,借由AI针对这些数据做“追踪数据”分析,获得分级排序的根因结果,以及进行预测——对设备或生产做预测性维护、基于大数据分析即时优化工作参数、借由模型实现系统和供应商的优化等。


这么说还是太过抽象,Stanley在分享中举了几个例子。首先说一说这里的“根因分析”。


通常在发现晶圆生产不良率高的问题以后,工程师们通常要花很长时间去找问题的根源。如果能够对工厂中的不良品进行归类,追踪这些不良品的所有参数、数据,经过系统分析后得出影响不良品的参数,再按照关联度大小对这些参数进行排序,在短期内找出问题根源,工厂的效率就会提升很多。


在图示的这一例遭遇的晶圆edge patch问题中,出现了6个最优关联度的参数(左下位置)。第一和第二个参数关联性最强,第一个参数是在Etch(蚀刻)这个流程的最后一步,电流发生显著激增;第二个参数,则是氦气值的明显降低。此处,etch流程的最后一步实际上也就是氦气分离,电流激增很可能是分离过程中,托盘与晶圆的边缘接触,产生了小范围的火花,所以这里托盘可能放置不平衡,托盘某些氦气口堵塞造成氦气值降低。这就是追踪数据在半导体制造中一个很好的例子。


BISTel中国区销售总监汪锋补充说:“一般制造行业发生不同的fault时,数据表现都是不一样的,像制造中unbalance轴承的数据曲线会是某一种表现方式,mis-alignment的时候数据又是另外一种表现。通过历史数据的不同表现方式,跟实际的fault,结合起来进行实时分析,系统就能初步判断这可能是什么样的问题。”


除了这种根因分析,借由追踪数据还能实现预测,包括预测维护、工作参数优化、系统/供应链动态优化。比如HMP实现的就是“预测维护(predictive maintenance)”。预测维护的价值在于提高维护效率,减少成本。


汪锋打了个比方:“比如你有一辆车,通常每5000英里需要保养一次,这是基于时间的维护(time-based maintenance),而预测维护则是condition-based,比如我可能会把发动机的转速或者温度数据等等,都结合起来,预测我下一次可能会出现什么问题。这种分析是实时的,可能会告诉你说现在汽车运转良好,一个月以后需要进行一次维护。”


Stanley表示:“固定一个时间,每隔一段时间做维护,可能会造成几个问题,第一是过度维护(over-maintenance),第二是可能我们想到要做维护的时候,问题就可能已经发生了。所以我们需要数据驱动的预测分析(data-driven preditive analysis),实时对关键参数做监测和分析,做到更准确的维护。”


文首提到的案例就是典型的“预测性分析”,这里还是来看两个具体的例子。首先是RUL分析(Remaing Usage Life,剩余使用寿命),上图左侧是生产设备各种参数的实时监控,包括了压力、温度、振动等。根据所有的参数,分析漂移趋势,通过算法就能够了解到当前机器的健康值,并且预测设备寿命。




除了设备健康分析,这类应用实则针对产品也是有分析预测价值的。根据这批晶圆的历史追踪数据,比如质量数据,实时分析在生产过程中每片晶圆所有流程的追踪数据。上图是一个质量看板,浅绿色表示正常且后续健康状况良好;深绿色表示现在是好的,但后续会有风险;黄色表示现在有风险,但短期内不会加剧…依此类推;甚至进行实时的质量分析,给产品健康状况预测打分。这些都是BISTel HMP的典型应用。


HMP解决方案的几个功能特性能够总结上面这些提到的智能制造的特性,包括工厂范围内的实时监控,错误检测,错误分类(Fault Classification,这个环节包含了设备问题的分析,减少排插、修复时间),以及最终的预测分析。“减少非计划停机,提升设备的资产利用率,维护成本降低,自然也就增加了产量。”Stanely说。


与此同时,通过AI来持续改善解决方案的质量,这是BISTel现在正在持续优化的方向。“数据很重要,因为我们需要具备know-how的能力,就是在发生问题时参数数据是什么样的。后续就能通过不断的学习去改善AI模型。”“目前我们的发展蓝图,是集中在人工智能的自我学习、自我完善方面。智能应用本身已经做得很完善了,下一步就是怎么让它去实现自主性,自主学习、自主扩大知识库、自主找出解决方案。”


协力中国制造


在HMP的基础设施部署方面,解决方案的数据库基础设施主体可以是在工厂本地,也可以是在云端。Stanley表示,当前BISTel的案例主要是基于微软Azure。“但未来我们也会跟其他的云合作,比如在中国的腾讯、阿里巴巴,我们未来可能都会合作。”


实际上,HMP只是BISTel诸多智能应用中的其中一例,实则在监测、分析、预测三个环节都有不同的应用。比如前面提到应用于监测环节的DFD,应用于分析环节的CM,HMP在BISTel的智能系统中位处预测环节。这些应用的核心都在助力智能制造。


BISTel目前的业务支柱虽然仍是半导体和面板制造,但业务线已经扩展到了PCB、生物科技、汽车制造及各种非半导体相关领域。或许在整个制造行业也很难找到BISTel智能制造领域的同级竞争对手,汪锋说:“很多厂商都说要去做AI,但很少能看到有真正完整的产品,大家普遍在讲概念。我们在很多行业,已经做过这些预测的解决方案。比如在化工行业、汽车行业、半导体、液晶行业都有实际的案例。甚至包括像是传送设备相关的,底下的马达,通过马达振动来完成预测。”Stanley补充道:“换句话就是落地。”


将智能制造的AI和自动化方案“落地”,大概是BISTel的底气所在。一直以来,BISTel都认为其主要竞争对手实际是企业内部的自己解决方案。但与此同时,BISTel本身也会与制造企业一起,定制化打造共有的定制化解决方案。比如在应对中国制造2025计划时。


“中国制造2025计划,中国期望开发自己的AI技术,并且成为智能制造的No.1。许多中国企业都有自己的需求,想要建立自己的解决方案。所以我们会合作,根据客户需求,在我们产品的基础上,去实现一些产品的共有。”


“比如我们在跟BOE京东方合作,我们和整个京东方集团,基于大数据的下一代分析产品。这个就是基于我们产品的基础之上,我们共同做开发,通过合作去完成大家共有的产品,就是这种方式。”“我们愿意分享最新的技术,共同把中国的智能制造带到新高度。”


本文为EET电子工程专辑 原创文章,禁止转载。


经典试读《精通开关电源(第3版)》—— 请点击文末阅读原文



↓↓ 点击图片参与活动 ↓↓


------------------------

与工程师一起改变世

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论 (0)
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 313浏览
  • 2025年4月13日(中国武汉)——在全球经济分化与地缘政治不确定性加剧的背景下,科技与金融的深度融合已成为推动创新与繁荣的关键动力。为实现科技创新、产业进步和金融发展有机结合,发挥金融对科技创新和产业进步的支持作用,国际金融论坛(IFF)科技金融委员会启动大会暨首届科技金融圆桌会议于4月13日在湖北省武汉市武汉产业创新发展研究院成功举行。同时,IFF科技金融委员会由国际金融论坛IFF与武创院联合成立。本次大会汇聚了来自政府、产业与学术研究机构及金融等多领域的精英,共同探讨科技金融如何更好地服务
    华尔街科技眼 2025-04-15 20:53 115浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 363浏览
  • 瑞芯微电子(Rockchip)是国内领先的AIoT SoC设计制造企业,专注于智能应用处理器及周边配套芯片的研发。飞凌嵌入式作为瑞芯微的战略合作伙伴,已基于瑞芯微RK3399、RK3568、RK3588、RK3576、RK3562和RK3506系列处理器推出了多款嵌入式主控产品,包括核心板、开发板和工控机,这些产品已成功帮助数千家企业客户完成了项目的快速开发和落地。本文将系统地梳理飞凌嵌入式RK平台主控产品在开发过程中常用的命令,助力更多开发者快速掌握RK系列芯片的开发方法。01、查看CPU温度
    飞凌嵌入式 2025-04-16 15:50 206浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 159浏览
  • 多极电磁铁的核心应用领域一、工业制造领域1.‌磁性材料处理‌:用于多极磁环充磁,通过四极、六极或八极磁场设计,使磁环获得均匀或梯度分布的磁性能,提升电机、传感器等设备的效率‌。在电子束焊接中控制电子束的聚焦和偏转,增强焊接精度(如精密电子元件加工)‌。2.‌机械控制与自动化‌应用于旋转磁场导向系统,优化工业机器人、自动化产线中磁性物料的传输路径。配合电磁吸盘用于起重设备,实现对金属部件的快速吸附与释放,提高搬运效率。二、科研实验领域1.‌物理与材料研究‌在实验室中生成径向梯度磁场或均匀磁场,用于
    锦正茂科技 2025-04-16 09:39 110浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 269浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 235浏览
  • 一、引言:健康管理数字化浪潮下的血压监测转型在慢性病高发与老龄化加剧的双重压力下,家庭健康监测设备正从“被动测量工具”向“主动健康管家”演进。传统血压计虽能提供基础数值,却无法解决用户的核心痛点:数据如何解读?异常如何干预?风险如何预防?WT2605C芯片方案的诞生,通过“AI对话+云端互联+个性化服务”三重技术突破,重新定义了血压计的价值边界——它不仅是一台测量仪器,更是一个全天候在线的健康管理生态系统。二、传统血压计的局限与用户需求升级1. 功能单一性困境数据孤岛:仅显示收缩压/舒张压数值,
    广州唯创电子 2025-04-16 08:55 197浏览
  • 在这个AI技术日新月异的时代,人工智能(AI)已经逐渐渗透到我们生活的方方面面,从工作到学习,从娱乐到医疗,AI都在以其独特的方式改变着我们的世界。作为一名计算机专业的大学老师,我近期有幸阅读了《AI帮你赢:人人都能用的AI方法论》一书,深感这本书不仅为专业人士提供了宝贵的AI使用技巧,更为广大学生打开了一扇通往AI世界的大门。 《AI帮你赢》一书于2024年12月正式出版,也是紧跟时代发展的一本书,最新的日期。这本书以通俗易懂的语言,系统地阐述了人工智能的核心理念、应用场景及实践方法
    curton 2025-04-16 21:47 149浏览
  •   网络链路攻防战术对抗仿真系统软件深度剖析   一、系统概览   北京华盛恒辉网络链路攻防战术对抗仿真系统软件,是专为网络安全领域攻防对抗需求打造的高仿真平台。它模拟真实网络环境中的攻、防行为,为安全研究人员以及红队、蓝队提供实战训练和策略验证工具。该系统以动态仿真技术为核心,融合人工智能与大数据分析,实现攻防战术的自动推演与可视化展示 。   应用案例   目前,已有多个网络链路攻防战术对抗仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润网络链路攻防战术对抗仿
    华盛恒辉l58ll334744 2025-04-16 14:42 116浏览
  •   水下装备体系论证系统软件全面解析   一、系统概述   水下装备体系论证系统软件是针对水下作战、资源勘探、海洋工程等需求,专门设计的信息化论证工具。该系统通过集成建模、仿真、优化等技术,对水下装备体系的使命任务、环境适应性、技术参数、作战效能等进行全流程分析,为装备体系设计、方案权衡和决策提供科学依据。   应用案例   目前,已有多个水下装备体系论证系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润水下装备体系论证系统。这些成功案例为水下装备体系论证系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-16 17:03 198浏览
  • 4月15日,京东全球购迎来十周年生日。为了回馈广大用户十年来的支持与信赖,早在4月初,京东全球购就已率先开启十周年庆典活动,为消费者带来了一场消费盛宴。来自全球各地的进口好物,以全场进口大牌1元抢、爆品低至5折、跨店每满200减30的优惠价格被呈现在消费者面前。同时,在迎来十周年庆典之际,京东全球购还宣布,未来一年,将投入亿级资源,升级四大商家扶持举措,包括提供仓配和流量等多项补贴,推出扶持新品、新商家等举措,助力更多进口商家降本提效,在京东获得可持续、高质量成长。十年如一日 打造跨境购物首选平
    华尔街科技眼 2025-04-16 16:18 151浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 88浏览
  • 一、引言:智能化趋势下的学爬玩具开发挑战随着早教理念的普及,学爬玩具作为婴幼儿早期运动能力开发的重要工具,市场需求持续增长。然而,传统学爬玩具开发面临多重挑战:需集成红外遥控、语音交互、电机控制等多模块,开发周期长、硬件成本高;复杂的红外编解码与语音功能实现依赖工程师深度参与,技术门槛陡增。如何以更低成本、更快速度打造差异化产品,成为行业亟待解决的痛点。二、传统开发模式痛点分析硬件冗余红外接收模块、语音芯片、主控MCU分立设计,导致PCB面积增加,BOM成本攀升。开发周期长需工程师独立完成红外协
    广州唯创电子 2025-04-16 08:40 179浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦