整理!放大电路负反馈的原理最全的文章!

电源Fan 2021-07-07 09:00


▍一、提高放大倍数的稳定性

引入负反馈以后,放大电路放大倍数稳定性的提高通常用相对变化量来衡量。

因为: 
所以求导得: 
即: 

二、减小非线性失真和抑制噪声

由于电路中存在非线性器件,会导致输出波形产生一定的非线性失真。如果在放大电路中引入负反馈后,其非线性失真就可以减小。


需要指出的是:负反馈只能减小放大电路自身产生的非线性失真,而对输入信号的非线性失真,负反馈是无能为力的。


放大电路的噪声是由放大电路中各元器件内部载流子不规则的热运动引起的。而干扰来自于外界因素的影响,如高压电网、 雷电等的影响。负反馈的引入可以减小噪声和干扰,但输出端的信号也将按同样规律减小,结果输出端的信号与噪声的比值(称为信噪比)并没有提高。

三、负反馈对输入电阻的影响

由于负反馈可以提高放大倍数的稳定性,所以引入负反馈后,在低频区和高频区放大倍数的下降程度将减小,从而使通频带展宽。

引入负反馈后,可使通频带展宽约(1+AF)倍。

四、负反馈对输入电阻的影响


(a)串联反馈 (b)并联反馈
图1 求输入电阻


1、串联负反馈使输入电阻提高

引入串联负反馈后,输入电阻可以提高(1+AF)倍。即: 
式中:ri为开环输入电阻

rif为闭环输入电阻


2、并连负反馈使输入电阻减小引入并联负反馈后,输入电阻减小为开环输入电阻的1/(1+AF )倍。 

即: 

五、负反馈对输出电阻的影响

1、电压负反馈使输出电阻减小


放大电路引入电压负反馈后,输出电压的稳定性提高了,即电路具有恒压特性。


引入电压负反馈后,输出电阻rof减小到原来的1/(1+AF)倍。


2、电流负反馈使输出电阻增大


放大电路引入电流负反馈后,输出电流的稳定性提高了,即电路具有恒流特性。


引入电流负反馈后,使输出电阻rof增大到原来的(1+AF)倍。


3、负反馈选取的原则


(1)要稳定静态工作点,应引入直流负反馈。

(2)要改善交流性能,应引入交流负反馈。
(3)要稳定输出电压,应引入电压负反馈; 
要稳定输出电流,应引入电流负反馈。
(4)要提高输入电阻,应引入串联负反馈; 

要减小输入电阻,应引入并联负反馈。

六、 深度负反馈的特点

1、串联负反馈的估算条件


反馈深度(1+AF)>>1的负反馈,称为深度负反馈。通常,只要是多级负反馈放大电路,都可以认为是深度负反馈.此时有:
 
因为:, 

所以:xi≈xf

估算条件:


(1)对于深度串联负反馈有:ui≈uf (称之为“虚短” )

(2)由于串联负反馈的闭环输入电阻增大,在深度负反馈条件下:ii≈0(称之为“虚断” )

2、并联负反馈的估算条件


因为深度负反馈有:xi≈xf


(1)对于深度并联负反馈有:ii≈if(或称之为“虚断”)

(2)并联负反馈的闭环输入电阻减小,在深度负反馈条件下: ui ≈0 (称之为“虚短” )

七、深度负反馈放大倍数的估算

例1 估算图2所示反馈放大电路的电压放大倍数Auf。



(a) (b)
图2 电压串联负反馈电路和电流串联负反馈电路


解:(1)在图2(a)所示放大电路中,可以判断Rf构成越级电压串联负反馈,因而可认为是深度负反馈,即有ui≈uf。。因而其反馈系数为: 

所以闭环电压放大倍数为: 

另外,从电路结构上可以认为,反馈电压是输出电压经电阻Rf和Re1串联分压后得到的,所以:
 
仍可得: 

(2)在图2(b)所示放大电路中,可以判断
构成电流串联负反馈。所以在深度负反馈条件下,有ui≈uf。因为uf= ie×,uo=-io×Rc≈ie×Rc,所以其反馈系数为: 所以闭环电压放大倍数为: 

例2 估算图3所示反馈放大电路的源电压放大倍数Ausf。


(a)              (b)
图3 电压并联负反馈电路和电流并联负反馈电路

解:(1)在图3(a)所示放大电路中,Rb构成电压并联负反馈。在深度负反馈条件下,由式(4—16)可知ii≈if(
或——虚断),而且还有ui≈0(虚短)。

由图3(a)的输入回路可得: 

所以,闭环源电压放大倍数为: 

(2)在图3(b)所示放大电路中,Rf构成越级电压并联负反馈。在深度负反馈条件下,ii≈if(虚断),并且有ui≈0(虚短),所以有:

又从图3(b)的输出端可知:  

所以闭环源电压放大倍数为: 

从以上分析过程可以看到,在深度负反馈条件下,放大倍数仅由一些电阻来决定,几乎与放大电路无关。若不是深度负反馈,则用上述方法计算出来的结果误差较大,此时应采用其他方法分析。

▶ 放大电路负反馈的判断

一.反馈回路的判断


电路的放大部分就是晶体管或运算放大器的基本电路。而反馈是把放大电路输出端信号的一部分或全部引回到输入端的电路,则反馈回路就应该是从放大电路的输出端 引回到输入端的一条回路。这条回路通常是由电阻和电容构成。寻找这条回路时,要特别注意不能直接经过电源端和接地端,这是初学者最容易犯的问题。例如图5 如果只考虑极间反馈则放大通路是由T1的基极到T1的集电极再经过T2的基极到T2的集电极;而反馈回路是由T2的集电极经Rf至T1的发射极。反馈信号 uf=ve1影响净输入电压信号ube1。



图4 电压串联负反馈

二.交直流的判断

根据电容“隔直通交”的特点,我们可以判断出反馈的交直流特性。如果反馈回路中有电容接地,则为直流反馈,其作用为稳定静态工作点;如果回路中串连电容,则为交流反馈,改善放大电路的动态特性;如果反馈回路中只有电阻或只有导线,则反馈为交直流共存。

图1种的反馈即为交直流共存。


三.正负反馈的判断


正负反馈的判断使用瞬时极性法。瞬时极性是一种假设的状态,它假设在放大电路的输入端引入一瞬时增加的信号。这个信号通过放大电路和反馈回路回到输入端。反 馈回来的信号如果使引入的信号增加则为正反馈,否则为负反馈。在这一步要搞清楚放大电路的组态,什发射极、共集电极还什基极放大。每一种组态放大电路的信 号输入点和输出点都不一样,其瞬时极性也不一样。如图5所示。相位差180°则瞬时极性相反,相位差0°则瞬时极性相同。运算放大器电路也同样存在反馈问题。运算放大器的输出端和同相输入端的瞬时极性相同,和反相输入端的瞬时极性相反。

表 不同组态放大电路的相位差

依据以上瞬时极性判别方法,从放大电路的输入端开始用瞬时极性标识,沿放大电路、反馈回路再回到输入端。这时再依据负反馈总是减弱净输入信号,正反馈总是增强净输入信号的原则判断出反馈的正负。

在晶体管放大电路中,若反馈信号回到输入极的瞬时极性与原处的瞬时极性相同则为正反馈,相反则为负反馈。其中注意共发射极放大电路的反馈有时回到公共极—— 发射极,此时反馈回到发射极的瞬时极性与基极的瞬时极性相同则为负反馈,相反则为正反馈。

图4中的瞬时极性判断顺序如下:T1基极(+)→T1集电极 (-)→T2基极(-)→T2集电极(+)→经Rf至T1发射极(+),此时反馈回到发射极的瞬时极性与基极的瞬时极性相同所以电路为负反馈。在运算放大 器反馈电路中,若反馈回来的瞬时极性与同一端的原瞬时极性相同则为正反馈,相反则为负反馈;若反馈回来的瞬时极性与另一端的原瞬时极性相同则为负反馈,相 反则为正反馈。

四.反馈类型的判断

反馈类型是特指电路中交流负反馈的类型,所以只有判断电路中存在交流负反馈才判断反馈的 类型。反馈是取出输出信号(电压或电流)的全部或一部分送回到输入端并以某种形式(电压或电流)影响输入信号。所以反馈依据取自输出信号的形式的不同分为 电压反馈和电流反馈。依据它影响输入信号的形式分为串联反馈和并联反馈。


图5 电流并联负反馈

(1)串联并联的判断

反馈的串并联类型是指反馈信号影响输入信号的方式即在输入端的连接方式。串联反馈是指净输入电压和反馈电压在输入回路中的连接形式为串联,如图1中的净输入电压信号ube1和反馈信号uf=ue1;而并联反馈是指的净输入电流和反馈电流在输入回路中并联,如图4中的净输入电流ib1和if的连接形式。综合一 下就是反馈信号如果引回到输入回路的发射极即为串联反馈,引回到基极即为并联反馈。而在运算放大器负反馈电路中,反馈引回到输入另一端则为串联反馈如图 6,图中uD与uF串联连接;如果引回到输入另一端则为串联反馈如图7,图中iD与iF并联连接。

 
图6 电压串联负反馈 
 
图7 电流并联负反馈

(2)电压电流的判断


电压电流反馈是指反馈信号取自输出信号(电压或电流)的形式。电压反馈以图6为例,反馈电压uF是经R1、R2组成的分压器由输出电压uO取样得来。反馈 电压是输出电压的一部分,故是电压反馈。在判断电压反馈时,可以采用一种简便的方法,即根据电压反馈的定义——反馈信号与输出电压成比例,设想将放大电路 的负载RL两端短路,短路后如使uF=0(或IF=0),就是电压反馈。

电流反馈以图7为例, 图中反馈电流iF为电阻R1和R2对输出电流iO的分流,所以是电流反馈。另一种简便方法就是将负载RL开路(RL=∞),致使iO=0,从而使iF=0,即由输出引起的反馈信号消失了,从而确定为电流反馈。

▶ 电压并联负反馈

电压并联负反馈的电路如图8所示。因反馈信号与输入信号在一点相加,为并联反馈。根据瞬时极性法判断,为负反馈,且为电压负反馈。因为并联反馈,在输入端采用电流相加减。即。



图8 电压并联负反馈


▶ 电压串联负反馈


(a)分立元件放大电路 (b)集成运放放大电路
图9 电压串联负反馈

(1) 判断方法

对图9(a)所示电路,根据瞬时极性法判断,经Rf加在发射极E1上的反馈电压为‘+’,与输入电压极性相同,且加在输入回路的两点,故为串联负反馈。反馈 信号与输出电压成比例,是电压反馈。后级对前级的这一反馈是交流反馈,同时Re1上还有第一级本身的负反馈,这将在下面分析。


对图(b),因输入信号和反馈信号加在运放的两个输入端,故为串联反馈,根据瞬时极性判断是负反馈,且为电压负反馈。结论是交直流串联电压负反馈。


▶ 电流串联负反馈

电流串联负反馈电路如图7-7所示。图10 (a)是基本放大电路将Ce去掉而构成,

图10 (b)是由集成运放构成。

对图10 (a),反馈电压从Re上取出,根据瞬时极性和反馈电压接入方式,可判断为串联负反馈。因输出电压短路,反馈电压仍然存在,故为串联电流负反馈。


(a) (b)
图10 电流串联负反馈

对图10(b)的电路,求其互导增益

 

▶ 
电流并联负反馈

电流并联负反馈的电路如图11(a)、(b)所示。对于图(a)电路,反馈节点与输入点相同,所以是电流并联负反馈。对于图(b)电路,也为电流并联负反馈。


(a) (b)
图11 并联电流负反馈

电流反馈系数是
 ,以图11(b)为例
电流放大倍数 
显然,电流放大倍数基本上只与外电路的参数有关,与运放内部参数无关。电压放大倍数为 

END

来源:eet-china

版权归原作者所有,如有侵权,请联系删除。

推荐阅读

互感器、电能表接线和原理讲解!

满足你的好奇,我们把示波器拆了!

别小看这不起眼的电阻,里面有很多学问!

电源Fan 了解行业动态,学习深度技术,观察微小事物——电源Fan,一个涨知识的公众号。
评论 (0)
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 147浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 184浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 195浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 178浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 239浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 174浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 201浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 233浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 205浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 169浏览
我要评论
0
7
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦