Linux系统中编译、链接的基石-ELF文件:扒开它的层层外衣,从字节码的粒度来探索

一口Linux 2021-06-30 11:50

初次见面

大家好,我是 ELF 文件,大名叫 Executable and Linkable Format

经常在 Linux 系统中开发的小伙伴们,对于我肯定是再熟悉不过了,特别是那些需要了解编译、链接的家伙们,估计已经把我研究的透透的。

为了结识更多的小伙伴,今天呢,就是我的开放日,我会像洋葱一样,一层一层地拨开我的心,让更多的小伙伴来了解我,欢迎大家前来围观。

以前啊,我看到有些小伙伴在研究我的时候,看一下头部的汇总信息,然后再瞅几眼 Section 的布局,就当做熟悉我了。

从科学的态度上来说,这是远远不够的,未达究竟

当你面对编译、链接的详细过程时,还是会一脸懵逼。

今天,我会从字节码的颗粒度,毫无保留、开诚布公、知无不言、言无不尽、赤胆忠心、一片丹心、鞠躬尽瘁、死而后已的把自己剖析一遍,让各位看官大开眼界、大饱眼福。

您了解这些知识之后呢,在今后继续学习编译、链接的底层过程,以及一个可执行程序在从硬盘加载到内存、一直到 main 函数的执行,心中就会非常的敞亮

也就是说,掌握了 ELF 文件的结构和内容,是理解编译、链接和程序执行的基础。

你们不是有一句俗话嘛:磨刀不误砍柴工

好了,下面我们就开始吧!


文件很单纯,复杂的是人

作为一种文件,那么肯定就需要遵守一定的格式,我也不例外。

宏观上看,可以把我拆卸成四个部分

图中的这几个概念,如果不明白的话也没关系,下面我会逐个说明的。

在 Linux 系统中,一个 ELF 文件主要用来表示 3 种类型的文件:

既然可以用来表示 3 种类型的文件,那么在文件中,肯定有一个地方用来区分这 3 种情况

也许你已经猜到了,在我的头部内容中,就存在一个字段,用来表示:当前这个 ELF 文件,它到底是一个可执行文件?是一个目标文件?还是一个共享库文件

另外,既然我可以用来表示 3 种类型的文件,那么就肯定是在 3 种不同的场合下被使用,或者说被不同的家伙来操作我:

  1. 可执行文件:被操作系统中的加载器从硬盘上读取,载入到内存中去执行;

  2. 目标文件:被链接器读取,用来产生一个可执行文件或者共享库文件;

  3. 共享库文件:在动态链接的时候,由 ld-linux.so 来读取;

就拿链接器和加载器来说吧,这两个家伙的性格是不一样的,它们看我的眼光也是不一样的。

链接器在看我的时候,它的眼睛里只有 3 部分内容:

也就是说,链接器只关心 ELF header, Sections 以及 Section header table 这 3 部分内容。

加载器在看我的时候,它的眼睛里是另外的 3 部分内容:

加载器只关心 ELF header, Program header table 和 Segment 这 3 部分内容。

对了,从加载器的角度看,对于中间部分的 Sections, 它改了个名字,叫做 Segments(段)。换汤不换药,本质上都是一样一样的。

可以理解为:一个 Segment 可能包含一个或者多个 Sections,就像下面这样:

这就好比超市里的货架上摆放的商品:有矿泉水、可乐、啤酒,巧克力,牛肉干,薯片。

理货员的角度看:它们属于 6 种不同的商品;但是从超市经理的角度看,它们只属于 2 类商品:饮料和零食。

怎么样?现在对我已经有一个总体的印象了吧?

其实只要掌握到 2 点内容就可以了:

  1. 一个 ELF 文件一共由 4 个部分组成;

  2. 链接器和加载器,它们在使用我的时候,只会使用它们感兴趣的部分;

还有一点差点忘记给你提个醒了:在 Linux 系统中,会有不同的数据结构来描述上面所说的每部分内容。

我知道有些小伙伴比较性急,我先把这几个结构体告诉你。

初次见面,先认识一下即可,千万不要深究哦。

描述 ELF header 的结构体

描述 Program header table 的结构体

描述 Section header table 的结构体


ELF header(ELF 头)

头部内容,就相当于是一个总管,它决定了这个完整的 ELF 文件内部的所有信息,比如:

  1. 这是一个 ELF 文件;

  2. 一些基本信息:版本,文件类型,机器类型;

  3. Program header table(程序头表)的开始地址,在整个文件的什么地方;

  4. Section header table(节头表)的开始地址,在整个文件的什么地方;

你是不是有点纳闷,好像没有说 Sections(从链接器角度看) 或者 Segments(从加载器角度看) 在 ELF 文件的什么地方。

为了方便描述,我就把 SectionsSegments 全部统一称为 Sections 啦!

其实是这样的,在一个 ELF 文件中,存在很多个 Sections,这些 Sections 的具体信息,是在 Program header table 或者 Section head table 中进行描述的。

就拿 Section head table 来举例吧:

假如一个 ELF 文件中一共存在 4 个 Section: .text、.rodata、.data、.bss,那么在 Section head table 中,将会有 4 个 Entry(条目)来分别描述这 4 个 Section 的具体信息(严格来说,不止 4 个 Entry,因为还存在一些其他辅助的 Sections),就像下面这样:

在开头我就说了,我要用字节码的粒度,扒开来给你看!

为了不耍流氓,我还是用一个具体的代码示例来描述,只有这样,你才能看到实实在在的字节码。

程序的功能比较简单:

// mymath.c

int my_add(int a, int b)
{
return a + b;
}
// main.c

#include <stdio.h>
extern int my_add(int a, int b);

int main()
{
int i = 1;
int j = 2;
int k = my_add(i, j);
printf("k = %d \n", k);
}

从刚才的描述中可以知道:动态库文件 libmymath.so, 目标文件 main.o 和 可执行文件 main,它们都是 ELF 文件,只不过属于不同的类型

这里就以可执行文件 main 来拆解它!

我们首先用指令 readelf -h main 来看一下 main 文件中,ELF header 的信息。

readelf 这个工具,可是一个好东西啊!一定要好好的利用它。

这张图中显示的信息,就是 ELF header 中描述的所有内容了。这个内容与结构体 Elf32_Ehdr 中的成员变量是一一对应的!

有没有发现图中第 15 行显示的内容:Size of this header: 52 (bytes)

也就是说:ELF header 部分的内容,一共是 52 个字节。那么我就把开头的这 52 个字节码给你看一下。

这回,我用 od -Ax -t x1 -N 52 main 这个指令来读取 main 中的字节码,简单解释一下其中的几个选项:

-Ax: 显示地址的时候,用十六进制来表示。如果使用 -Ad,意思就是用十进制来显示地址;

-t -x1: 显示字节码内容的时候,使用十六进制(x),每次显示一个字节(1);

-N 52:只需要读取 52 个字节;

52 个字节的内容,你可以对照上面的结构体中每个字段来解释了。

首先看一下前 16 个字节。

在结构体中的第一个成员是 unsigned char e_ident[EI_NIDENT];EI_NIDENT 的长度是 16,代表了 EL header 中的开始 16 个字节,具体含义如下:

0 - 15 个字节

怎样样?我以这样的方式彻底暴露自己,向你表白,足以表现出我的诚心了吧?!

如果被感动了,别忘记在文章的最底部,点击一下在看和收藏,也非常感谢您转发给身边的小伙伴。赠人玫瑰,手留余香!

为了权威性,我把官方文档对于这部分的解释也贴给大家看一下:

关于大端、小端格式,这个 main 文件中显示的是 1,代表小端格式。啥意思呢,看下面这张图就明白了:

那么再来看一下大端格式:

好了,下面我们继续把剩下的 36 个字节(52 - 16 = 32),也以这样的字节码含义画出来:

16 - 31 个字节

32 - 47 个字节

48 - 51 个字节

具体的内容就不用再解释了,一切都在感情深、一口闷,话不多说,都在酒里~~ 哦不对,重点都在图里!


字符串表表项 Entry

在一个 ELF 文件中,存在很多字符串,例如:变量名、Section名称、链接器加入的符号等等,这些字符串的长度都是不固定的,因此用一个固定的结构来表示这些字符串,肯定是不现实的。

于是,聪明的人类就想到:把这些字符串集中起来,统一放在一起,作为一个独立的 Section 来进行管理。

在文件中的其他地方呢,如果想表示一个字符串,就在这个地方写一个数字索引:表示这个字符串位于字符串统一存储地方的某个偏移位置,经过这样的按图索骥,就可以找到这个具体的字符串了。

比如说啊,下面这个空间中存储了所有的字符串:

在程序的其他地方,如果想引用字符串 “hello,world!”,那么就只需要在那个地方标明数字 13 就可以了,表示:这个字符串从偏移 13 个字节处开始

那么现在,咱们再回到这个 main 文件中的字符串表,

ELF header 的最后 2 个字节是 0x1C 0x00,它对应结构体中的成员 e_shstrndx,意思是这个 ELF 文件中,字符串表是一个普通的 Section,在这个 Section 中,存储了 ELF 文件中使用到的所有的字符串。

既然是一个 Section,那么在 Section header table 中,就一定有一个表项 Entry 来描述它,那么是哪一个表项呢?

这就是 0x1C 0x00 这个表项,也就是第 28 个表项。

这里,我们还可以用指令 readelf -S main 来看一下这个 ELF 文件中所有的 Section 信息:

其中的第 28 个 Section,描述的正是字符串表 Section:

可以看出来:这个 SectionELF 文件中的偏移地址是 0x0016ed,长度是 0x00010a 个字节。

下面,我们从 ELF header 的二进制数据中,来推断这信息。


读取字符串表 Section 的内容

那我就来演示一下:如何通过 ELF header 中提供的信息,把字符串表这个 Section 给找出来,然后把它的字节码打印出来给各位看官瞧瞧。

要想打印字符串表 Section 的内容,就必须知道这个 SectionELF 文件中的偏移地址

要想知道偏移地址,只能从 Section head table 中第 28 个表项描述信息中获取。

要想知道第 28 个表项的地址,就必须知道 Section head tableELF 文件中的开始地址,以及每一个表项的大小。

正好最后这 2 个需求信息,在 ELF header 中都告诉我们了,因此我们倒着推算,就一定能成功。

ELF header 中的第 3235 字节内容是:F8 17 00 00(注意这里的字节序,低位在前),表示的就是 Section head table 在 ELF 文件中的开始地址(e_shoff)。

0x000017F8 = 6136,也就是说  Section head table开始地址位于 ELF 文件的第 6136 个字节处。

知道了开始地址,再来算一下第 28 个表项 Entry 的地址。

ELF header 中的第 46、47 字节内容是:28 00,表示每个表项的长度是 0x0028 = 40 个字节。

注意这里的计算都是从 0 开始的,因此第 28 个表项的开始地址就是:6136 + 28 * 40 = 7256,也就是说用来描述字符串表这个 Section 的表项,位于 ELF 文件的 7256 字节的位置。

既然知道了这个表项 Entry 的地址,那么就扒开来看一下其中的二进制内容:

执行指令:od -Ad -t x1 -j 7256 -N 40 main

其中的 -j 7256 选项,表示跳过前面的 7256 个字节,也就是我们从 main 这个 ELF 文件的 7256 字节处开始读取,一共读 40 个字节。

40 个字节的内容,就对应了 Elf32_Shdr 结构体中的每个成员变量:

这里主要关注一下上图中标注出来的 4 个字段:

sh_name: 暂时不告诉你,马上就解释到了;

sh_type:表示这个 Section 的类型,3 表示这是一个 string table;

sh_offset: 表示这个 Section,在 ELF 文件中的偏移量。0x000016ed = 5869,意思是字符串表这个 Section 的内容,从 ELF 文件的 5869 个字节处开始;

sh_size:表示这个 Section 的长度。0x0000010a = 266 个字节,意思是字符串表这个 Section 的内容,一共有 266 个字节。

还记得刚才我们使用 readelf 工具,读取到字符串表 Section 在 ELF 文件中的偏移地址是 0x0016ed,长度是 0x00010a 个字节吗?

与我们这里的推断是完全一致的!

既然知道了字符串表这个 SectionELF 文件中的偏移量以及长度,那么就可以把它的字节码内容读取出来。

执行指令: od -Ad -t c -j 5869 -N 266 main,所有这些参数应该不用再解释了吧?!

看一看,瞧一瞧,是不是这个 Section 中存储的全部是字符串?

刚才没有解释 sh_name 这个字段,它表示字符串表这个 Section 本身的名字,既然是名字,那一定是个字符串。

但是这个字符串不是直接存储在这里的,而是存储了一个索引,索引值是 0x00000011,也就是十进制数值 17

现在我们来数一下字符串表 Section 内容中,第 17 个字节开始的地方,存储的是什么?

不要偷懒,数一下,是不是看到了:“.shstrtab” 这个字符串(\0是字符串的分隔符)?!

好了,如果看到这里,你全部都能看懂,那么关于字符串表这部分的内容,说明你已经完全理解了,给你一百个赞!!!


读取代码段的内容

从下面的这张图(指令:readelf -S main):

可以看到代码段是位于第 14 个表项中,加载(虚拟)地址0x08048470,它位于 ELF 文件中的偏移量0x000470,长度是 0x0001b2 个字节。

那我们就来试着读一下其中的内容。

首先计算这个表项 Entry 的地址:6136 + 14 * 40 = 6696

然后读取这个表项 Entry,读取指令是 od -Ad -t x1 -j 6696 -N 40 main:

同样的,我们也只关心下面这 5 个字段内容:

sh_name: 这回应该清楚了,表示代码段的名称在字符串表 Section 中的偏移位置。0x9B = 155 字节,也就是在字符串表 Section 的第 155 字节处,存储的就是代码段的名字。回过头去找一下,看一下是不是字符串 “.text”;

sh_type:表示这个 Section 的类型,1(SHT_PROGBITS) 表示这是代码;

sh_addr:表示这个 Section 加载的虚拟地址是 0x08048470,这个值与 ELF header 中的 e_entry 字段的值是相同的;

sh_offset: 表示这个 Section,在 ELF 文件中的偏移量。0x00000470 = 1136,意思是这个 Section 的内容,从 ELF 文件的 1136 个字节处开始;

sh_size:表示这个 Section 的长度。0x000001b2 = 434 个字节,意思是代码段一共有 434 个字节。

以上这些分析结构,与指令 readelf -S main 读取出来的完全一样!

PS: 在查看字符串表 Section 中的字符串时,不要告诉我,你真的是从 0 开始数到 155 啊!可以计算一下:字符串表的开始地址是 5869(十进制),加上 155,结果就是 6024,所以从 6024 开始的地方,就是代码段的名称,也就是 “.text”

知道了以上这些信息,我们就可以读取代码段的字节码了.使用指令:od -Ad -t x1 -j 1136 -N 434 main 即可。

内容全部是黑乎乎的的字节码,我就不贴出来了。


Program header

文章的开头,我就介绍了:我是一个通用的文件结构,链接器和加载器在看待我的时候,眼光是不同的

为了对 Program header 有更感性的认识,我还是先用 readelf 这个工具来从总体上看一下 main 文件中的所有段信息。

执行指令:readelf -l main,得到下面这张图:

显示的信息已经很明白了:

  1. 这是一个可执行程序;

  2. 入口地址是 0x8048470;

  3. 一共有 9 个 Program header,是从 ELF 文件的 52 个偏移地址开始的;

布局如下图所示:

开头我还告诉过你:SectionSegment 本质上是一样的,可以理解为:一个 Secgment 由一个或多个 Sections 组成。

从上图中可以看到,第 2program header 这个段,由那么多的 Section 组成,这下更明白一些了吧?!

从图中还可以看到,一共有 2LOAD 类型的段:

我们来读取第一个 LOAD 类型的段,当然还是扒开其中的二进制字节码。

第一步的工作是,计算这个段表项的地址信息。

ELF header 中得知如下信息:

  1. 字段 e_phoff :Program header table 位于 ELF 文件偏移 52 个字节的地方。

  2. 字段 e_phentsize: 每一个表项的长度是 32 个字节;

  3. 字段 e_phnum: 一共有 9 个表项 Entry;

通过计算,得到可读、可执行的 LOAD 段,位于偏移量 116 字节处。

执行读取指令:od -Ad -t x1 -j 116 -N 32 main

按照上面的惯例,我还是把其中几个需要关注的字段,与数据结构中的成员变量进行关联一下:

p_type: 段的类型,1: 表示这个段需要加载到内存中;

p_offset: 段在 ELF 文件中的偏移地址,这里值为 0,表示这个段从 ELF 文件的头部开始;

p_vaddr:段加载到内存中的虚拟地址 0x08048000;

p_paddr:段加载的物理地址,与虚拟地址相同;

p_filesz: 这个段在 ELF 文件中,占据的字节数,0x0744 = 1860 个字节;

p_memsz:这个段加载到内存中,需要占据的字节数,0x0744= 1860 个字节。注意:有些段是不需要加载到内存中的;

经过上述分析,我们就知道:从 ELF 文件的第 1 到 第 1860 个字节,都是属于这个 LOAD 段的内容。

在被执行时,这个段需要被加载到内存中虚拟地址0x08048000 这个地方,从这里开始,又是一个全新的故事了。


再回顾一下

到这里,我已经像洋葱一样,把自己的层层外衣都扒开,让你看到最细的颗粒度了,这下子,您是否对我有足够的了解了呢?

其实只要抓住下面 2重点即可:

  1. ELF header 描述了文件的总体信息,以及两个 table 的相关信息(偏移地址,表项个数,表项长度);

  2. 每一个 table 中,包括很多个表项 Entry,每一个表项都描述了一个 Section/Segment 的具体信息。

链接器和加载器也都是按照这样的原理来解析 ELF 文件的,明白了这些道理,后面在学习具体的链接、加载过程时,就不会迷路啦!


------ End ------

让知识流动起来,越分享越幸运!

Hi~,我是道哥,嵌入式开发老兵。
星标公众号,能更快找到我!


推荐阅读

【1】C语言指针-从底层原理到花式技巧,用图文和代码帮你讲解透彻
【2】一步步分析-如何用C实现面向对象编程
【3】原来gdb的底层调试原理这么简单
【4】内联汇编很可怕吗?看完这篇文章,终结它!
【5】都说软件架构要分层、分模块,具体应该怎么做


一口Linux 写点代码,写点人生!
评论
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 84浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 86浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 180浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 133浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 127浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 81浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 85浏览
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 138浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 128浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,与汽车技术领先者法雷奥合作,采用创新的开放系统协议(OSP)技术,旨在改变汽车内饰照明方式,革新汽车行业座舱照明理念。结合艾迈斯欧司朗开创性的OSIRE® E3731i智能LED和法雷奥的动态环境照明系统,两家公司将为车辆内饰设计和功能设立一套全新标准。汽车内饰照明的作用日益凸显,座舱设计的主流趋势应满足终端用户的需求:即易于使用、个性化,并能提供符合用户生活方式的清晰信息。因此,动态环境照明带来了众多新机遇。智能LED的应用已
    艾迈斯欧司朗 2025-01-15 19:00 71浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 158浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 135浏览
  • 故障现象 一辆2007款法拉利599 GTB车,搭载6.0 L V12自然吸气发动机(图1),累计行驶里程约为6万km。该车因发动机故障灯异常点亮进厂检修。 图1 发动机的布置 故障诊断接车后试车,发动机怠速轻微抖动,发动机故障灯长亮。用故障检测仪检测,发现发动机控制单元(NCM)中存储有故障代码“P0300 多缸失火”“P0309 气缸9失火”“P0307 气缸7失火”,初步判断发动机存在失火故障。考虑到该车使用年数较长,决定先使用虹科Pico汽车示波器进行相对压缩测试,以
    虹科Pico汽车示波器 2025-01-15 17:30 87浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 125浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦