详解CAN通信的位定时与同步

原创 汽车ECU开发 2021-06-16 07:40
依照瑞萨公司的《CAN入门书》的组织思路来学习CAN通信的相关知识,并结合网上相关资料以及学习过程中的领悟整理成笔记。好记性不如烂笔头,加油!
1.位定时




1.1 比特率和波特率
1) . 位速率:又叫做比特率(bit rata)、信息传输率,表示的是单位时间内,总线上传输的信息量,即每秒能够传输的二进制位的数量,单位是bit per second。
2)波特率:又叫做传码率、信号传输率,表示的是单位时间内传输的码元的数量,当两相调制时,一个码元用一个二进制位表示,此时波特率在数值上和比特率是一样的,CAN总线正是两项调制这种情况。
Tips: 比特率和波特率并不是一回事儿,这一定一定要牢记。

1.2 位时间

1.2.1 位时间的概念

位时间:表示的是一个二进制位在总线上传输时所需要的时间。
所以:
位速率=1/位时间

首先了解一下CAN总线系统中的两个时钟:晶振时钟周期和 CAN时钟周期

晶振时钟周期:是由单片机振荡器的晶振频率决定的,指的是振荡器每震荡一次所消耗的时间长度,也是整个系统中最小的时间单位。

CAN时钟周期:CAN时钟是由系统时钟分频而来的一个时间长度值,实际上就是一个时间份额Tq。可以按照下面的公式计算:

CAN时钟周期=2×晶振时钟周期×BRP

其中BRP叫做波特率预分频值(baudrate prescaler)。

1.2.2 位时间的分段

如上文所述,在CAN的位定时中,一个CAN时钟周期称为一个时间量子 — Tq。
如下图所示:位时间分为四个段:同步段、传播段、相位缓冲段1、相位缓冲段2,总共8~25个时间量子(Tq)。

1)同步段(Synchronization Segment)

  • 长度固定,1个时间量子Tq;

  • 一个位的传输从同步段开始;

  • 同步段用于同步总线上的各个节点,一个位的跳边沿在此时间段内。

2)传播段(Propagation Segment)

  • 传播段用于补偿报文在总线和节点上传输时所产生的时间延迟;

  • 传播段时长 ≥ 2 × 报文在总线和节点上传输时产生的时间延迟 ;

  • 传播段时长可编程(1~8个时间量子Tq)。

3)相位缓冲段1(Phase Buffer Segment1)

  • 用于补偿节点间的晶振误差;

  • 允许通过重同步对该段加长;

  • 在这个时间段的末端进行总线状态的采样;

  • 长度可编程(1~8个时间量子Tq)

4)相位缓冲段2(Phase Buffer Segment2)

  • 用于补偿节点间的晶振误差;

  • 允许通过重同步对该段缩短;

  • 长度可编程(1~8个时间量子Tq)

于是:

tBit=tSS+tPS+tPBS1+tPBS2

tBit=tSS+tPS+tPBS1+tPBS2

tBit:位时间;tSS:同步段时间;tPS:传播段时间;tPBS1:时间段1;tPBS2:时间段2。

2.CAN的同步机制




在CAN通信中,有两种同步机制:硬同步与重同步。

2.1 、同步的规则

☆ 一个位时间内只允许一种同步方式,要么硬同步要么重同步;

☆ 任何一个从“隐性”到“显性”的下降沿 都可以用于同步;

☆ 硬同步发生在报文的SOF位,所有接收节点调整各自当前位的同步段,使其位于发送的SOF位内;

☆ 重同步发生在一个报文SOF位之外的其它段,当下降沿落在了同步段之外时发生重同步;

☆ 在SOF到仲裁场发送的时间段内,如果有多个节点同时发送报文,那么这些发送节点对跳变沿不进行重同步

2.2 硬同步

硬同步发生在SOF位,所有接收节点调整各自当前位的同步段,调整宽度不限

(1)发送节点Node_A在发送SOF位时,SOF位的下降沿在SS段;

(2)这个时候接收节点Node_B发现自己当前位的SS段和发送节点SOF位的SS段不同步。也就是说当Node_A产生SOF位SS段时,Node_B的当前位的SS段已经在5个Tq之前产生了;

(3)于是接收节点Node_B强行将自己当前位的SS段拉到与SOF位的SS段同步。

2.3 重同步

重同步发生在一个报文SOF位之外的其它位场内,当接收节点Node_B当前位的下降沿落在了发送节点Node_A当前位的同步段之外时发生重同步。

重同步会导致相位缓冲段1的延长或者相位缓冲段2的缩短,从而保证采样点的准确。

2.3.1 PBS1延长

发的晚(慢),收的早(),导致PBS1延长。

如上图所示:

(1)发送节点Node_A比接收节点Node_B的时间慢了,也就是说Node_A当前位的ss段产生的时候,Node_B 当前位的ss段已经在2个Tq之前产生了;

(2)所以这个时候接收节点Node_B就将PBS1延长2个Tq的时间;

(3)于是这个时候Node_A当前位的采样点就和Node_B的采样点同步了。

2.3.2 PBS2缩短

发的早(快),收的晚(慢),导致PBS2缩短。

如上图所示:

(1)发送节点Node_A当前位的SS段诞生2Tq时长之后,接收节点Node_B的当前位才产生SS段;

(2)于是,接收节点Node_B当前位的PBS2段缩短,

(3)这样就会导致接收节点Node_B的下一位能够提前2个Tq,从而Node_B的下一位采样点和Node_A下一位的采样点能够同步。

2.3.3 同步跳转宽度

在重同步时,有个同步跳转宽度(SJW,Synchro Jump Width)的概念,表示的是PBS1和PBS2重同步时允许跳转的最大宽度。

同步跳转宽度必须满足以下几个条件:

SJW必须小于PBS1和PBS2的最小值;

SJW最大值不能超过4;

3.位定时参数的确定




位定时的参数主要涉及以下几个:

1)位速率:单位为bps、Kbps、Mbps

1Mbps=1000Kbps=1000000bps

1Mbps=1000Kbps=1000000bps

(2)位时间:tBit,单位一般为纳秒(ns)

tBit = 1/位速率

(3)时间量子(Tq):

Tq=1/NBT

NBT 表示的是一个位时间tBit内包含Tq的个数。
(4) 传输延迟时间tPTS
CAN报文在CAN总线上的传输时,物理延迟包含两个部分:
  • 在CAN-BUS上传输造成的延迟;

  • 在节点上传输造成延迟;

按照CAN通信协议的规定,补偿给传播延迟的时间长度要至少等于实际实际传播延迟时长的2倍,即:

需要注意的是

Tips: 在CAN总线通信系统中是以时间量子Tq来度量时间的,所以如果延迟补偿时间tPTS = 3.1Tq,那么这个时候要取:tPTS = 4Tq。

(5)相位缓冲段

相位缓冲段的时间长度分为两种情况:

if (NBT-1-tPTS_Tq)/2==偶数

    PBS1_Tq = PBS2_Tq = (NBT-1-tPTS_Tq)/2

else

    PBS1_Tq = (NBT-1-tPTS_Tq)/2

    PBS2_Tq = PBS1_Tq + 1

(6) 同步跳转宽度

SJW=min(PBS1_Tq,4)
(7) 验证晶振误差Df
CAN总线的晶振误差必须同时满足下面三个条件:

4.例子




以下面的例子来讲述位定时参数的确定方法:

MCU晶振16MHz,位速率1Mbps,总线长度20m,单位总线延迟5ns/m,物理接口的发送接收延迟150ns

(1)晶振时钟周期:T=1s/16MHz = 62.5ns

(2)位时间 :tBit = 1/1Mbps = 1000ns

(3)BPR和NBT:考虑到 T = 125ns,tBit = 1000ns,所以BPR只能取值为1,才能满足NBT∈[8,25],于是预分频数BPR=1;

(4)CAN时钟周期Tq = 2 × 62.5 × 1 = 125ns

(5)NBT = 8

(6)传输延迟时间tPTS

tPTS=2×(20×5+150)=500ns

所以

tPTS_Tq=tPTS/Tq=500/125=4

于是NBT=8个Tq的长度中需要有4个Tq用于补偿传播延迟,于是还剩下4个Tq,

SS同步段长度固定占据1个Tq,还剩3个Tq,于是PBS1分配一个Tq,PBS2分配2个Tq。
(7)同步跳转宽度

SJW=min{PBS1,4}=1

(8)晶振误差


版权声明:本文为CSDN博主「weixin_40528417」的原创文章,遵循CC 4.0 BY-SA版权协议,获得作者的转载权限。

阅读原文,关注作者CSDN
推荐阅读

大众ID.4的电子电气架构解析

结合AUTOSAR和DDS实现灵活的车辆架构

谈谈OEM的软件开发

为什么车厂纷纷自研自动驾驶芯片?

什么是实时操作系统(RTOS)?

区域控制器在新架构中的作用有哪些?

分享不易,恳请点个“在看”
汽车ECU开发 专注于汽车电子ECU软件开发,技术分享。
评论
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 147浏览
  •  在这个日新月异的科技时代,智能家居正以前所未有的速度融入我们的日常生活,从智能灯光到温控系统,从安防监控到语音助手,每一处细节都透露着科技的温度与智慧。而在这场智能化浪潮中,一个看似不起眼却至关重要的组件——晶体管光耦,正扮演着连接物理世界与数字世界的隐形桥梁角色,默默推动着智能家居行业的发展与革新。 晶体管光耦——智能家居的“神经递质”晶体管光耦,作为一种能够将电信号转换为光信号,再通过光信号控制另一侧电路开关的电子元器件,其独特的工作原理使得它在隔离传输、抗干扰及保护电
    晶台光耦 2025-01-02 16:19 150浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 159浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 108浏览
  • 从无到有:智能手机的早期探索无线电话装置的诞生:1902 年,美国人内森・斯塔布菲尔德在肯塔基州制成了第一个无线电话装置,这是人类对 “手机” 技术最早的探索。第一部移动手机问世:1938 年,美国贝尔实验室为美国军方制成了世界上第一部 “移动” 手机。民用手机的出现:1973 年 4 月 3 日,摩托罗拉工程师马丁・库珀在纽约曼哈顿街头手持世界上第一台民用手机摩托罗拉 DynaTAC 8000X 的原型机,给竞争对手 AT&T 公司的朋友打了一个电话。这款手机重 2 磅,通话时间仅能支持半小时
    Jeffreyzhang123 2025-01-02 16:41 165浏览
  • 影像质量应用于多个不同领域,无论是在娱乐、医疗或工业应用中,高质量的影像都是决策的关键基础。清晰的影像不仅能提升观看体验,还能保证关键细节的准确传达,例如:在医学影像中,它对诊断结果有着直接的影响!不仅如此,影像质量还影响了:▶ 压缩技术▶ 存储需求▶ 传输效率随着技术进步,影像质量的标准不断提高,对于研究与开发领域,理解并提升影像质量已成为不可忽视的重要课题。在图像处理的过程中,硬件与软件除了各自扮演着不可或缺的基础角色,有效地协作能够确保图像处理过程既高效又具有优异的质量。软硬件各扮演了什么
    百佳泰测试实验室 2025-01-03 10:39 112浏览
  • Matter加持:新世代串流装置如何改变智能家居体验?随着现在智能家庭快速成长,串流装置(Streaming Device,以下简称Streaming Device)除了提供更卓越的影音体验,越来越多厂商开始推出支持Matter标准的串流产品,使其能作为智能家庭中枢,连结多种智能家电。消费者可以透过Matter的功能执行多样化功能,例如:开关灯、控制窗帘、对讲机开门,以及操作所有支持Matter的智能家电。此外,再搭配语音遥控器与语音助理,打造出一个更加智能、便捷的居家生活。支持Matter协议
    百佳泰测试实验室 2025-01-03 10:29 125浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 153浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 105浏览
  • 本文继续介绍Linux系统查看硬件配置及常用调试命令,方便开发者快速了解开发板硬件信息及进行相关调试。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。查看系统版本信息查看操作系统版本信息root@ido:/# cat /etc/*releaseDISTRIB_ID=UbuntuDISTRIB_RELEASE=20.04DISTRIB_CODENAME=focalDIS
    Industio_触觉智能 2025-01-03 11:37 127浏览
  • 国际标准IPC 标准:IPC-A-600:规定了印刷电路板制造过程中的质量要求和验收标准,涵盖材料、外观、尺寸、焊接、表面处理等方面。IPC-2221/2222:IPC-2221 提供了用于设计印刷电路板的一般原则和要求,IPC-2222 则针对高可靠性电子产品的设计提供了进一步的指导。IPC-6012:详细定义了刚性基板和柔性基板的要求,包括材料、工艺、尺寸、层次结构、特征等。IPC-4101:定义了印刷电路板的基板材料的物理和电气特性。IPC-7351:提供了元件封装的设计规范,包括封装尺寸
    Jeffreyzhang123 2025-01-02 16:50 192浏览
  • 在科技飞速发展的今天,机器人已经逐渐深入到我们生活和工作的各个领域。从工业生产线上不知疲倦的机械臂,到探索未知环境的智能探测机器人,再到贴心陪伴的家用服务机器人,它们的身影无处不在。而在这些机器人的背后,C 语言作为一种强大且高效的编程语言,发挥着至关重要的作用。C 语言为何适合机器人编程C 语言诞生于 20 世纪 70 年代,凭借其简洁高效、可移植性强以及对硬件的直接操控能力,成为机器人编程领域的宠儿。机器人的运行环境往往对资源有着严格的限制,需要程序占用较少的内存和运行空间。C 语言具有出色
    Jeffreyzhang123 2025-01-02 16:26 151浏览
  • 【工程师故事】+半年的经历依然忧伤,带着焦虑和绝望  对于一个企业来说,赚钱才是第一位的,对于一个人来说,赚钱也是第一位的。因为企业要活下去,因为个人也要活下去。企业打不了倒闭。个人还是要吃饭的。企业倒闭了,打不了从头再来。个人失业了,面对的不仅是房贷车贷和教育,还有找工作的焦虑。企业说,一个公司倒闭了,说明不了什么,这是正常的一个现象。个人说,一个中年男人失业了,面对的压力太大了,焦虑会摧毁你的一切。企业说,是个公司倒闭了,也不是什么大的问题,只不过是这些公司经营有问题吧。
    curton 2025-01-02 23:08 270浏览
  • 前言近年来,随着汽车工业的快速发展,尤其是新能源汽车与智能汽车领域的崛起,汽车安全标准和认证要求日益严格,应用范围愈加广泛。ISO 26262和ISO 21448作为两个重要的汽车安全标准,它们在“系统安全”中扮演的角色各自不同,但又有一定交集。在智能网联汽车的高级辅助驾驶系统(ADAS)应用中,理解这两个标准的区别及其相互关系,对于保障车辆的安全性至关重要。ISO 26262:汽车功能安全的基石如图2.1所示,ISO 26262对“功能安全”的定义解释为:不存在由于电子/电气系统失效引起的危害
    广电计量 2025-01-02 17:18 206浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 151浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦