DDR3布线的那些事儿(二)

高速先生 2021-06-24 16:00

文 | 肖勇超 一博科技高速先生团队队员


DDR3的设计有着严格等长要求,归结起来分为两类(以64位的DDR3为例):数据 (DQ,DQS,DQM):组内等长,误差控制在20MIL以内,组间不需要考虑等长;地址、控制、时钟信号:地址、控制信号以时钟作参考,误差控制在100MIL以内,Address、Control与CLK归为一组,因为Address、Control是以CLK的下降沿触发的由DDR控制器输出,DDR颗粒由CLK的上升沿锁存Address、Control总线上的状态,所以需要严格控制CLK与Address/Command、Control之间的时序关系,确保DDR颗粒能够获得足够的建立和保持时间。


关注等长的目的就是为了等时,绕等长时需要注意以下几点:


  1. 确认芯片是否有Pin-delay,绕线时要确保Pin-delay开关已经打开; 

  2. 同组信号走在同层,保证不会因换层影响实际的等时;同样的换层结构,换层前后的等长要匹配,即时等长;不同层的传播延时需要考虑,如走在表层与走在内层,其传播速度是不一样的,所以在走线的时候需要考虑,表层走线尽量短,让其差别尽量小(这也是为什么Intel的很多GUIDE上面要求,表层的走线长度不超过250MIL等要求的原因);

  3. Z轴的延时:在严格要求的情况下,需要把Z轴的延时开关也打开,做等长时需要考虑(ALLEGRO中层叠需要设置好,Z轴延时才是对的)。

  4. 蛇形绕线时单线按3W,差分按5W绕线(W为线宽)。且保证各BUS信号组内间距按3H, 不同组组间间距为5H (H为到主参考平面间距),DQS和CLK 距离其他信号间距做到5H以上。单线和差分绕线方式如下图1所示:

 


图1.单线和差分绕线方式示例


而另一个核心重点便是电源处理。DDR3中有三类电源,它们是VDD(1.5V)、VTT(0.75V)、VREF(0.75V,包括VREFCA和VREFDQ)。


1. VDD(1.5V)电源是DDR3的核心电源,其引脚分布比较散,且电流相对会比较大,需要在电源平面分配一个区域给VDD(1.5V);VDD的容差要求是5%,详细在JEDEC里有叙述。通过电源层的平面电容和专用的一定数量的去耦电容,可以做到电源完整性。VDD电源平面处理如下图2所示:

 

图2:VDD电源处理


2. VTT电源,它不仅有严格的容差性,而且还有很大的瞬间电流;可以通过增加去耦电容来实现它的目标阻抗匹配;由于VTT是集中在终端的上拉电阻处,不是很分散,且对电流有一定的要求,在处理VTT电源时,一般是在元件面同层通过铺铜直接连接,铜皮要有一定宽度(120MIl)。VTT电源处理如图3所示:

 图3:VTT电源


3.VREF电源 。VREF要求更加严格的容差性,但是它承载的电流比较小。它不需要非常宽的走线,且通过一两个去耦电容就可以达到目标阻抗的要求。DDR3的VERF电源已经分为VREFCA和VREFDQ两部分,且每个DDR3颗粒都有单独的VREFCA和VREFDQ,因其相对比较独立,电流也不大,布线处理时也建议用与器件同层的铜皮或走线直接连接,无须在电源平面层为其分配电源。注意铺铜或走线时,要先经过电容再接到芯片的电源引脚,不要从分压电阻那里直接接到芯片的电源引脚。VREF电源处理如图4所示: 

 

图4:VREF电源


滤波电容的FANOUT 小电容尽量靠近相应的电源引脚,电容的引线也要尽量短,并减少电源或地共用过孔;

 

图5 :小滤波电容的Fanout       

                                               

Bulk电容的FANOUT


电源的Bulk电容一般在设计中起到的是储能滤波的作用,在做Fanout时要多打孔,建议2个孔以上,电容越大需要过孔越多,也可以用铺铜的形式来做。电容的电源孔和地孔尽量靠近打,如图6所示。                                                                 

图6:储能电容的Fanout


综上所述,我们常规DDR3的走线设计总结如下表:

(双击放大查看)



—End—


如果不想错过“高速先生”的精彩内容,请记得点击上方蓝字“高速先生”,右上角“...”点选“设为星标”。可第一时间看到高速先生的推文,感谢大家的关注和支持!


回复数字获取往期文章。(向上滑阅览)

回复36→高速串行之S参数系列

回复35→高速串行之编码系列

回复34→高速串行之S参数-连接器系列

回复33→高速串行简史系列

回复32→电源系列(下)

回复31→电源系列(上)

回复30→DDR系列(下)

回复29→DDR系列(上)

回复28→层叠系列(下)

回复27→层叠系列(上)

回复26→拓扑和端接系列(下)

回复25→拓扑和端接系列(上)

回复24→反射详解系列文章

回复23→阻抗系列(下)

回复22→阻抗系列(中)

回复21→阻抗系列(上)

回复20→绕线与时序

回复19→SERDES与CDR系列

回复18→既等长,为何不等时系列

回复17→cadence等长处理&规则设置

回复16→DDR时序学习笔记系列

回复15→串行系列

回复14→DDR信号完整性仿真介绍系列

回复13→PCB设计技巧分享一二

回复12→高速设计三座大山

回复11→PCB设计十大误区-绕不完的等长系列

回复10→PCB设计十大误区三

回复09→DDRX系列

回复08→高速串行系列

回复07→设计先生之回流设计系列

回复06→略谈Allegro Pcb Design 小技巧

回复05→PCB设计十大误区一二

回复04→微带线系列

回复03→抽丝剥茧系列

回复02→串扰探秘系列

回复01→案例分享系列

扫码关注

微信号|高速先生


觉得内容还不错的话,点个“在看”呗

高速先生 一博科技自媒体,用浅显易懂的方式讲述高速设计,有“工程师掌上图书馆”之美称,随时随地为网友解答高速设计技术问题。
评论
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 42浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 452浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 474浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 512浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 492浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 483浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 173浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 461浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 103浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 43浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦