思考 | 中断中能不能调printf?

嵌入式大杂烩 2021-06-20 22:00

关注「嵌入式大杂烩」,星标公众号,一起进步!

来源:嵌入式客栈


[导读] 大家好,我是逸珺。前面说会写一下Modbus-RTU的实现,写了1000多字了,有兴趣的稍等一下哈。前面在一个群里看到一个朋友在一个串口接收中断里打印遇到了问题,今天聊下这个话题。

扒一扒printf

对于单片机中printf到底向哪里打印,这个不同的编译器会有不同的处理方式。比如IAR的printf,如果是在线调试,有可能通过c-spy打印到IAR的调试终端,如果已经将printf重映射到串口,那么会从指定的串口打印出去。

以IAR ARM开发环境为例,来撸一下printf背后究竟是怎么实现的:

首先写一个简单的hello world开始:

#include <stdio.h>
int main()
{
    printf("Hello world");
    return 0;
}

接着来查找一下printf的出处,在stdio.h中找到了其声明:

__EFF_NW1  __ATTRIBUTES   void perror(const char *);
__EFF_NW1  __DEPREC_PRINTF int  printf(const char *_Restrict, ...);
__EFF_NW1  __ATTRIBUTES   int  puts(const char *);
__EFF_NW1  __DEPREC_SCANF  int  scanf(const char *_Restrict, ...);
__EFF_NR1NW2 __DEPREC_PRINTF int  sprintf(char *_Restrict,                                              const char *_Restrict, ...);
__EFF_NW1NW2 __DEPREC_SCANF int  sscanf(const char *_Restrict, 

到这里好像无法再进行下去了,先看看map文件,这里只放了map的一部分:

dl7M_tln.a: [3]
    XShttio.o     60  3  9
    abort.o       6
    exit.o        4
    low_level_init.o   4
    printf.o     40
    putchar.o    32
    xfail_s.o      64        1        4
    xprintffull_nomb.o   3 618
    xprout.o   22
    -------------------------------------------------
    Total:       3 850        4       13
    
......
printf  0x00001be9   0x28  Code  Gb  printf.o [3]
putchar  0x00001c6d   0x20  Code  Gb  putchar.o [3]

看到了有一个printf.o模块被编译了,有这个文件,那么应该有源文件,试着在IAR的安装目录下找找,果然有:

.\IAR Systems\Embedded Workbench 8.0\arm\src\lib\dlib\file\printf.c

int printf(const char * _Restrict fmt, ...)
/* print formatted to stdout */
  int ans;
  va_list ap;  
  va_start(ap, fmt);
  ans = _Printf(&_Prout, (void *)1, fmt, &ap, 0);
  va_end(ap);
  return ans;
}

printf通过使用va_list/va_start/va_end,在这里进行可变参数的解析,而真正实现最终打印的函数是哪一个呢?是下面这句话在起作用:

_Printf(&_Prout, (void *)1, fmt, &ap, 0);

_Printf的原型是怎样的呢?在.\IAR Systems\Embedded Workbench 8.0\arm\src\lib\dlib\DLib.h中发现:

__ATTRIBUTES int _Printf(_PrintfPfnType *, void *, const char *, __Va_list *,int);

_PrintfPfnType这个是啥玩意?继续撸下去:

#if _DLIB_PRINTF_CHAR_BY_CHAR
  typedef void *(_PrintfPfnType)(void *, char);
#else
  typedef void *(_PrintfPfnType)(void *, const char *, _Sizet);
#endif

明白了,这个是一个函数指针,根据打印方式是否是逐字符打印,函数指针分了两种模式:逐字符模式或者缓冲区模式。

在回到printf的定义处,发现这个指针传的是_Prout。好接着扒下去,在

.\arm\src\lib\dlib\formatters\xprout.c发现了其具体的实现:

#if _DLIB_PRINTF_CHAR_BY_CHAR
void *_Prout(void *str, char c)
{
   return (putchar(c) == c ? str : 0);
}
#else
  #if _DLIB_FILE_DESCRIPTOR
  void *_Prout(void *str, const char *buf, size_t n)
  {
    return fwrite(buf, 1, n, stdout) == n ? str : 0;
  }
  #else
  void *_Prout(void *str, const char *buf, size_t n)
  {
    return __write(_LLIO_STDOUT, (unsigned char const *)buf, n) == n 
        ? str : 0;
  }
  #endif
#endif

_DLIB_PRINTF_CHAR_BY_CHAR 宏是根据IAR的DLIB配置做定义。

所以IAR编译的时候会包含DLib_Defaults.h,这里就定义了逐字符模式宏,如果要采用文件方式则需要修改配置。但是一般单片机里不会这么干。所以真正的 _Prout的实现就是这样的了:

void *_Prout(void *str, char c)
{
  return (putchar(c) == c ? str : 0);
}

这样就定位到最终实现字符打印的函数是putchar了,而putchar是在哪里声明的呢?在stdio.h中发现了它的踪迹:

__ATTRIBUTES int  putchar(int);

来了一个好像没见过的函数前缀,再继续找一下,在.\arm\inc\c\yvals.h中找到了

#define __ATTRIBUTES  __intrinsic __nounwind

这两个关键字是编译内部使用的,文档里没有说明这个是怎么使用的,但是我猜想编译器在编译时可能会检测这个函数是否用户定义了同名函数,如定义了就使用用户定义的,没定义就使用系统库。放一个空的putchar来验证一下:

#include <stdio.h>
int putchar(int c)
{
    return(c);
}

int main()
{
    printf("Hello world");
    return 0;
}

然后再看看map文件:

dl7M_tln.a: [3]
    abort.o         6
    exit.o          4
    low_level_init.o    4
    printf.o         40
    xfail_s.o       64    4
    xprintffull_nomb.o   3 618
    xprout.o        22
    ------------------------------------------------
    Total:       3 758   4
    .......
 putchar   0x00001bbd    0x2  Code  Gb  main.o [1]   

putchar使用了main.o的实现。而如果使用库实现的,从前面的map文件看到putchar.o,一找发现了putchar.c文件:

int putchar(int c)
/* put character to stdout */
     unsigned char uc = c;
     if (__write(_LLIO_STDOUT, &uc, 1) == 1)
     {
        return uc;
     }
     return EOF;
}

系统原来是调用了__write函数,在.\IAR Systems\Embedded Workbench 8.0\arm\inc\c\LowLevelIOInterface.h中找到了:

 __ATTRIBUTES size_t __write(intconst unsigned char *, size_t);

到这里不继续了,你如果再找就发现

.\8.0\arm\RTOS\SEGGER\NXP\LPC4357\Start_LPC4357_CMSIS\Setup\SEGGER_RTT_Syscalls_IAR.c

有它的实现:

size_t __write(int handle, const unsigned char * buffer, size_t size) {
  (void) handle;  /* Not used, avoid warning */
  SEGGER_RTT_Write(0, (const char*)buffer, size);
  return size;
}

其实就是各种底层具体输出的实现了,比如打印到c-spy,或者打印到串口。

比如在:

.\8.0\arm\src\flashloader\ST\FlashSTM32F10x\Flash_stm32f10xx.c

int putchar(int c)
{
    USART1->DR = c;
    while(0 == (USART1->SR & (1UL << 7)));
    return(c);
}

这就是printf重映射到串口的实现,这个是一个同步查询单字节串口输出函数。大致就上面的分析,总结成一个图就是这样:

当然这里仅仅分析了逐字符打印的串口的情况。下面回到问题本身,为什么中断里不能调用printf?

为啥ISR不能printf

首先中断里肯定不适合调用printf,那么为什么呢?就比如上面的串口实现方式,就以9600,1个起始位,1个停止位,8个数据位的常见方式为例:

你看,传输一个字节要1个毫秒,如果打印好几个字节就是好几个毫秒了,所以答案几乎就已经很清楚了,在中断函数里打印,会增加中断函数执行的时间。中断需要快进快出!比如是一个串口逐字节接收中断函数,外部的报文逐字节输入,而中断函数先打印一点日志,好几个毫秒就过去了。如果UART外设是一个单字节的接收寄存器,那完了,报文指定被冲掉了。有的UART可能有多字节FIFO,但是即便是这样,也有很大的概率会被冲掉。

这是一个中断里不能调用printf的主要原因,执行费时!

在IAR的文档里也阔以看到,如果要实现printf的重定向,需要用户实现底层的__write函数,那为啥前面又是实现的putchar呢,其实putchar最终是调用的__write函数,所以直接覆盖putchar肯定也是可以的。

另外如果编译环境配置printf不一样,这个内部实现也可能需要很多的存储空间。这对单片机而言也是不合算的。来比较一下,把printf去掉:

int main()
{
    return 0;
}

编译出来的结果是:

    152 bytes of readonly  code memory
  1024 bytes of readwrite data memory

加上后,编译出来是这样:

  7470 bytes of readonly  code memory
     34 bytes of readonly  data memory
  1037 bytes of readwrite data memory

看就这么一句printf,code区增加了近7K字节!当然如果你选择其他的printf配置,可能会小一些,比如:

不同的单片机编译器对printf的处理会不相同,具体可以查查相关文档。

不安全

这个printf内部再很多编译环境下,有可能是线程安全的。如果函数实现内部有加锁,在应用程序中调用了printf,但还没有执行完。但此时中断来了,转而执行中断,中断时是无法获取这个锁的,此时程序就挂了。

解决办法

可以自己实现一个print系统,开辟一个环形缓冲区。如果想在中断里打印一点数据,不要同步打印,先将数据打印到内存,再设置一个标志,然后再中断外面实现真正的串口输出。

  • 如果是裸机程序,只需要在主循环里检测缓冲区是否有数据,有就输出到真正的串口。
  • 如果是RTOS应用,可以开辟一个任务,将优先级设的低一点,在任务内管理这个缓冲区,如果有数据就输出到串口。需要注意的是,就如前面所说,调用接口是不能加锁的,否则就不能在中断里使用。

有了这个思路,要实现就不难了。

END

猜你喜欢:

干货 | 分享一个实用的、可应用于单片机的内存管理模块


实用 | 嵌入式中常用的宏定义


基础 | 从这些知识点入手,学单片机就简单多了


在公众号聊天界面回复1024,可获取嵌入式资源;回复 ,可查看文章汇总。

文章都看完了不点个

嵌入式大杂烩 专注于嵌入式技术,包括但不限于C/C++、嵌入式、物联网、Linux等编程学习笔记,同时,内包含大量的学习资源。欢迎关注,一同交流学习,共同进步!
评论
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 71浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 58浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 149浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 60浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 159浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦