干货 | 串口自动波特率识别程序设计

嵌入式大杂烩 2021-06-19 22:25

大家好,我是痞子衡,是正经搞技术的痞子。今天痞子衡给大家分享的是嵌入式里串口(UART)自动波特率识别程序设计与实现

串口(UART)是嵌入式里最基础最常用也最简单的一种通讯(数据传输)方式,可以说是工程师入门通讯领域的启蒙老师,同时串口打印也是嵌入式项目里非常经典的调试与交互方式。

最精简的串口仅使用两根单向信号线:TXD、RXD,这两根信号线是独立工作的,因此数据收发既可分开也可同时进行,这就是所谓的全双工。串口没有主从机概念,并且没有专门的时钟信号 SCK,所以串口通信也属于异步传输。

说到异步传输,这就不得不提波特率(每秒钟传输bit数)的问题了,通信双方必须使用一致的波特率才能完成正确的数据传输。正常情况下,我们都是为两个串口设备事先约定好波特率,比如 MCU 与上位机通信,在 MCU 程序里按 115200 的波特率去初始化 UART 外设,然后上位机串口调试助手也设置 115200 波特率,双方再联合工作。

有时候,我们也希望能有一种灵活的波特率约定方式,比如建立通信前,在上位机串口调试助手里随意设置一种波特率,然后按这个波特率发送数据,MCU 端能自动识别出这个波特率,并用识别出来的波特率去初始化 UART 外设,然后再进行后续数据传输,这种方式就叫自动波特率识别。痞子衡今天要分享的就是在 MCU 里实现自动波特率识别的程序设计:

  • 程序主页:https://github.com/JayHeng/cortex-m-apps/tree/master/components/autobaud

一、串口(UART)自动波特率识别程序设计

1.1 函数接口定义

首先是设计自动波特率识别程序头文件:autobaud.h ,这个头文件里直接定义如下 3 个接口函数原型。涵盖必备的初始化流程 init()、deinit(),以及最核心的波特率识别功能 get_rate()。

//! @brief 初始化波特率识别
void autobaud_init(void);

//! @brief 检测波特率识别是否已完成,并获取波特率值
bool autobaud_get_rate(uint32_t *rate);

//! @brief 关闭波特率识别
void autobaud_deinit(void);

1.2 识别设计思想

关于识别,因为上位机数据是从 RXD 引脚过来的,所以在 MCU 里需要先将 RXD 引脚配置成普通数字输入 GPIO(这个引脚需要上拉,默认保持高电平),然后检测这个 GPIO 的电平跳变(一般用下降沿)并计时。

下图是典型的 UART 单字节传输时序,I/O 空闲状态是高电平,传输时总是由 1bit 低电平起始位开启,然后是从 LSB 到 MSB 的 8bit 数据位,校验位是可选项(我们暂不开启),最后由 1bit 高电平停止位结束,I/O 回归高电平空闲状态。

  • Note 1:检测下降沿跳变,是因为 I/O 空闲为高,起始位的存在保证了每 Byte 传输周期总是从下降沿开始。
  • Note 2:起始位和停止位两个 bit 的存在还兼有波特率容错的功能,通信双方波特率在 3% 的误差内数据传输均可以正常进行。

虽然我们不需要约定上位机波特率,但是要想实现波特率自动识别,上位机初始传输的数据却必须要事先约定好(可理解为接头暗号),这涉及到 MCU 里检测电平跳变次数与相应计时计算。MCU识别完成后将暗号发回给上位机确认。

痞子衡设计的接头暗号是 0x5A, 0xA6 两个字节,两字节暗号相比单字节暗号容错性更好一些(以防 I/O 上有干扰,导致误识别),根据指定的暗号和 UART 传输时序图,我们很容易得到如下常量定义:

enum _autobaud_counts
{
    //! 0x5A 字节对应的下降沿个数
    kFirstByteRequiredFallingEdges = 4,
    //! 0xA6 字节对应的下降沿个数
    kSecondByteRequiredFallingEdges = 3,
    //! 0x5A 字节(从起始位到停止位)第一个下降沿到最后一个下降沿之间的实际bit数
    kNumberOfBitsForFirstByteMeasured = 8,
    //! 0xA6 字节(从起始位到停止位)第一个下降沿到最后一个下降沿之间的实际bit数
    kNumberOfBitsForSecondByteMeasured = 7,
    //! 两个下降沿之间允许的最大超时(us)
    kMaximumTimeBetweenFallingEdges = 80000,
    //! 对实际检测出的波特率值做对齐处理,以便于更好地配置UART模块
    kAutobaudStepSize = 1200
};

上述常量定义里,kMaximumTimeBetweenFallingEdges 指定了两个下降沿之间允许的最大时间间隔,超过这个时间,自动波特率程序将丢掉前面统计的下降沿个数,重头开始识别,这个设计也是为了防止 I/O 上有电平干扰,导致误识别。

kAutobaudStepSize 常量是为了对检测出的波特率值做对齐处理,公式是 rounded = stepSize * (value/stepSize + 0.5),其中 value 是实际检测出的波特率值,rounded 是对齐后的波特率值,用对齐后的波特率值能更好地配置UART外设(这跟UART模块里波特率发生器SBR设计有关)。

最后就是 I/O 电平下降沿检测方法设计,这里既可以用软件查询(就是循环读取 I/O 输入电平,比较当前值与上一次值的差异),也可以使用GPIO模块自带的边沿中断功能。推荐使用后者,一方面计时更精确,另外也不用阻塞系统。检测到下降沿发生就调用一次如下 pin_transition_callback() 函数,在这个函数里统计跳变次数以及计时。

//! @brief 管脚下降沿跳变回调函数
static void pin_transition_callback(void);

1.3 主代码实现

根据上一小节描述的设计思想,我们很容易写出下面的主代码(autobaud_irq.c),代码里痞子衡都做了详细注释。有一点要提的是关于其中系统计时,可参考痞子衡旧文 《嵌入式里通用微秒(microseconds)计时函数框架设计与实现》 。

//! @brief 使能GPIO管脚中断
extern void enable_autobaud_pin_irq(pin_irq_callback_t func);
//! @brief 关闭GPIO管脚中断
extern void disable_autobaud_pin_irq(void);

//!< 已检测到的下降沿个数
static uint32_t s_transitionCount;
//!< 0x5A 字节检测期间内对应计数值
static uint64_t s_firstByteTotalTicks;
//!< 0xA6 字节检测期间内对应计数值
static uint64_t s_secondByteTotalTicks;
//!< 上一次下降沿发生时系统计数值
static uint64_t s_lastToggleTicks;
//!< 下降沿之间最大超时对应计数值
static uint64_t s_ticksBetweenFailure;

void autobaud_init(void)
{
    s_transitionCount = 0;
    s_firstByteTotalTicks = 0;
    s_secondByteTotalTicks = 0;
    s_lastToggleTicks = 0;
    // 计算出下降沿之间最大超时对应计数值
    s_ticksBetweenFailure = microseconds_convert_to_ticks(kMaximumTimeBetweenFallingEdges);
    // 使能GPIO管脚中断,并注册中断处理回调函数
    enable_autobaud_pin_irq(pin_transition_callback);
}

void autobaud_deinit(void)
{
    // 关闭GPIO管脚中断
    disable_autobaud_pin_irq();
}

bool autobaud_get_rate(uint32_t *rate)
{
    if (s_transitionCount == (kFirstByteRequiredFallingEdges + kSecondByteRequiredFallingEdges))
    {
        // 计算出实际检测到的波特率值
        uint32_t calculatedBaud =
            (microseconds_get_clock() * (kNumberOfBitsForFirstByteMeasured + kNumberOfBitsForSecondByteMeasured)) /
            (uint32_t)(s_firstByteTotalTicks + s_secondByteTotalTicks);

        // 对实际检测出的波特率值做对齐处理
        // 公式:rounded = stepSize * (value/stepSize + .5)
        *rate = ((((calculatedBaud * 10) / kAutobaudStepSize) + 5) / 10) * kAutobaudStepSize;

        return true;
    }
    else
    {
        return false;
    }
}

void pin_transition_callback(void)
{
    // 获取当前系统计数值
    uint64_t ticks = microseconds_get_ticks();
    // 计数这次检测到的下降沿
    s_transitionCount++;

    // 如果本次下降沿与上次下降沿之间间隔过长,则从头开始检测
    uint64_t delta = ticks - s_lastToggleTicks;
    if (delta > s_ticksBetweenFailure)
    {
        s_transitionCount = 1;
    }

    switch (s_transitionCount)
    {
        case 1:
            // 0x5A 字节检测时间起点
            s_firstByteTotalTicks = ticks;
            break;

        case kFirstByteRequiredFallingEdges:
            // 得到 0x5A 字节检测期间内对应计数值
            s_firstByteTotalTicks = ticks - s_firstByteTotalTicks;
            break;

        case (kFirstByteRequiredFallingEdges + 1):
            // 0xA6 字节检测时间起点
            s_secondByteTotalTicks = ticks;
            break;

        case (kFirstByteRequiredFallingEdges + kSecondByteRequiredFallingEdges):
            // 得到 0xA6 字节检测期间内对应计数值
            s_secondByteTotalTicks = ticks - s_secondByteTotalTicks;
            // 关闭GPIO管脚中断
            disable_autobaud_pin_irq();
            break;
    }

    // 记录本次下降沿发生时系统计数值
    s_lastToggleTicks = ticks;
}

二、串口(UART)自动波特率识别程序实现

前面讲的都是硬件无关设计,但最终还是要落实到具体 MCU 平台上的,其中 GPIO 中断部分是跟 MCU 紧相关的。我们以恩智浦 i.MXRT1011 为例来介绍硬件实现。

2.1 管脚中断方式实现(基于i.MXRT1011)

恩智浦 MIMXRT1010-EVK 有板载调试器 DAPLink,这个 DAPLink 中也集成了 USB 转串口的功能,对应的 UART 引脚是 IOMUXC_GPIO_09_LPUART1_RXD 和 IOMUXC_GPIO_10_LPUART1_TXD,我们就选用这个管脚 GPIO1[9] 做自动波特率检测,实现代码如下:

  • BSP程序:https://github.com/JayHeng/cortex-m-apps/tree/master/apps/autobaud_imxrt1011/bsp/src/pinmux_utility.c
typedef void (*pin_irq_callback_t)(void);
static pin_irq_callback_t s_pin_irq_func;

//! @brief UART引脚功能切换函数
void uart_pinmux_config(bool setGpio)
{
    if (setGpio)
    {
        IOMUXC_SetUartAutoBaudPinMode(IOMUXC_GPIO_09_GPIOMUX_IO09, GPIO1, 9);
    }
    else
    {
        IOMUXC_SetUartPinMode(IOMUXC_GPIO_09_LPUART1_RXD);
        IOMUXC_SetUartPinMode(IOMUXC_GPIO_10_LPUART1_TXD);
    }
}

//! @brief 使能GPIO管脚中断
void enable_autobaud_pin_irq(pin_irq_callback_t func)
{
    s_pin_irq_func = func;
    // 开启GPIO1_9下降沿中断
    GPIO_SetPinInterruptConfig(GPIO1, 9, kGPIO_IntFallingEdge);
    GPIO1->IMR |= (1U << 9);
    NVIC_SetPriority(GPIO1_Combined_0_15_IRQn, 1);
    NVIC_EnableIRQ(GPIO1_Combined_0_15_IRQn);
}

//! @brief GPIO中断处理函数
void GPIO1_Combined_0_15_IRQHandler(void)
{
    uint32_t interrupt_flag = (1U << 9);
    // 仅当GPIO1_9中断发生时
    if ((GPIO_GetPinsInterruptFlags(GPIO1) & interrupt_flag) && s_pin_irq_func)
    {
        //执行一次回调函数
        s_pin_irq_func();
        GPIO_ClearPinsInterruptFlags(GPIO1, interrupt_flag);
    }
}

2.2 在MIMXRT1010-EVK上实测

一切就绪,我们现在来实测一下,主函数流程很简单,测试结果也表明达到了预期效果,每次将 MCU 程序复位运行后,串口调试助手里可任意设置波特率。

int main(void)
{
    // 略去系统时钟配置...
    // 初始化定时器
    microseconds_init();
    // 将GPIO1_9先配成输入GPIO
    bool setGpio = true;
    uart_pinmux_config(setGpio);
    // 初始化波特率识别
    autobaud_init();
    // 检测波特率识别是否已完成,并获取波特率值
    uint32_t baudrate;
    while (!autobaud_get_rate(&baudrate));
    // 关闭波特率识别
    autobaud_deinit();
    // 配置UART1引脚
    setGpio = false;
    uart_pinmux_config(setGpio);
    // 初始化UART1外设
    uint32_t uartClkSrcFreq = BOARD_DebugConsoleSrcFreq();
    DbgConsole_Init(1, baudrate, kSerialPort_Uart, uartClkSrcFreq);

    PRINTF("Autobaud test success\r\n");
    PRINTF("Detected baudrate is %d\r\n", baudrate);

    while (1);
}

至此,嵌入式里串口(UART)自动波特率识别程序设计与实现痞子衡便介绍完毕了,掌声在哪里~~~

猜你喜欢:

嵌入式大杂烩文章精选

干货 | 分享一个实用的、可应用于单片机的内存管理模块

C语言、嵌入式项目中一些常用知识及技巧:第二弹

在公众号聊天界面回复1024,可获取嵌入式资源;回复 ,可查看文章汇总。

文章都看完了不点个

嵌入式大杂烩 专注于嵌入式技术,包括但不限于C/C++、嵌入式、物联网、Linux等编程学习笔记,同时,内包含大量的学习资源。欢迎关注,一同交流学习,共同进步!
评论 (0)
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 148浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 251浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 178浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 201浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 189浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 191浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 205浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 205浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 236浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 173浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦