【电源管理】关于反激式转换器的几大关键设计考量因素

电子芯期天 2021-06-19 08:00


反激式转换器有很多优点,例如它是成本最低的隔离式电源转换器,可以轻松提供多个输出电压,它是简单的原边控制器,可以提供高达300W的功率输出。反激式转换器可用于许多离线应用,从电视到手机充电器,以及电信和工业应用。但其设计选择过多,而且基本操作令人望而生怯,尤其对那些之前没有设计过此类转换器的人来说更是如此。本文将以53 VDC-12V@5A连续导通模式 (CCM) 反激式转换器为例,给出一些关键的设计考量因素。

图1显示了详细的60W反激式转换器设计原理图,其工作频率为250 kHz。当 FET Q2导通时,输入电压施加在变压器的原边绕组上。绕组中的电流逐步上升,从而将能量存储在变压器中。 由于输出整流器 D1 为反向偏置,因此流向输出的电流被阻断。当 Q2关断时,原边电流被阻断,迫使绕组的电压极性反转。电流流出副边绕组,使绕组电压的极性反转为正向电压。D1 导通,向输出负载提供电流并为输出电容器充电。

1: 60 W CCM反激式转换器原理图

我们可以添加额外的变压器绕组,甚至堆叠在其他绕组上面,以获得额外的输出。但是,增加的输出越多,调整率就会越差,因为绕组和磁芯(耦合)之间的磁通链不理想以及绕组的物理分离都会产生漏电感。漏电感作为与原边和输出绕组串联的杂散电感,会引发与绕组串联的意外压降,从而事实上降低了输出电压调整精度。常用的经验法则是,采用恰当绕线的变压器在交叉负载下获得变化率在+/-5%至10%之间的非稳压输出。此外,重载稳压输出会由于峰值检测泄漏电感引起的电压尖峰而导致空载副边输出电压大幅增加。在这种情况下,预加载或软钳位将有助于限制电压。

连续导通模式(CCM)和非连续导通模式 (DCM) 各有其优点。根据定义,DCM 操作发生在输出整流器电流降至0A,下一个周期开始之前。DCM 操作的优势包括:较低的原边电感(通常可以实现较小尺寸的电源变压器),消除了整流器的反向恢复损耗和 FET 导通损耗,而且没有右半平面零点。但是,与CCM相比,这些优势又被一些缺陷所抵消,如原边和副边中较高的峰值电流、增加的输入和输出电容、增加的电磁干扰 (EMI)以及轻载下降低的占空比。

2CCMDCM反激转换器FET和整流器电流的比较

图2表明了在最小VIN下,CCM和DCM模式下的负载从最大值下降到约25%时,Q2和D1中的电流变化。CCM模式下,当输入电压固定且负载介于其最大和最小设计水平(约25%)之间时,占空比恒定。电流“基础”水平随着负载的减少而降低,直到进入DCM模式,此时占空比下降。在DCM模式下,最大占空比仅在VIN最小和负载最大时出现。占空比随着输入电压的增加或负载的减少而降低。

这会导致高压线路和最小负载下的占空比变小,因此请确保您的控制器可以在此最短导通时间正常运行。在整流器电流达到 0A后,DCM 操作会给低于50%的占空比操作引入死区时间。其特征是FET漏极上的正弦电压,它由剩余电流、寄生电容和漏电感设置,通常为良性。在此设计中,采用CCM操作是为了通过降低开关损耗和变压器损耗来实现更高的效率。

该设计使用原边参考14V偏置绕组,在12V输出达到稳压后为控制器供电,与直接通过输入供电相比,降低了损耗。另外,我选择了两级输出滤波器以实现低纹波电压。第一级陶瓷电容器处理来自D1脉动电流的高RMS电流。再通过滤波器L1和C9/C10将纹波电压降低大约10倍,同时降低C9/C10 中的RMS电流。如果可以接受较高的输出纹波电压,也可以取消L/C滤波器,但输出电容器必须能够处理全部RMS电流。

UCC3809-1和UCC3809-2 控制器专为隔离式应用而设计,可以直接与U2光耦合器连接。在非隔离式设计中,可以取掉U2和U3以及直接连接到控制器的电压反馈电阻分压器,例如带有内部误差放大器的UCC3813-x系列。

Q2 和 D1 上的开关电压会在变压器绕组间和元件寄生电容中产生高频共模电流。如果没有 EMI 电容器 C12 提供返回路径,这些电流将流入输入和/或输出,增加噪声并可能导致操作不稳定。

Q3/R19/C18/R17组合通过将振荡器的电压斜坡与 R18 的原边电流采样电压相加来提供斜坡补偿,用于实现电流模式控制。斜坡补偿消除了次谐波振荡(宽占空比脉冲后面紧跟窄脉冲的现象)。由于该转换器设计为不超过50%的占空比操作,因此我添加了斜坡补偿以降低开关抖动敏感性。不过要注意,过大的电压斜率会将控制回路推向电压控制模式并可能引起不稳定。最后,光耦合器传输来自副边的误差信号以保持输出电压的稳定。反馈 (FB) 信号包括电流斜坡、斜坡补偿、输出误差信号和用于降低过流阈值的DC偏移。

图3为Q2和D1的电压波形,反映出一些漏电感和二极管反向恢复引起了振铃。

图3:通过钳位和缓冲器限制FET和整流器振铃(57 VIN,12V/5A)。

在要求低成本隔离式转换器的应用中,反激是标准拓扑。本设计示例涵盖了CCM 反激拓扑设计的基本注意事项。关注我们可以了解后续更详细的功率级设计计算。


往期精彩

1、超详细USB Type-C引脚信号及PCB布局布线介绍

2、超详细开关电源芯片内部电路解析;

3、70G硬件设计资料汇总分享;【友情推荐

4、分享一份老工程师(某为工作15年)经常使用的pcb企业封装库包含3D库;【友情推荐

5、【0基础学硬件】为什么在VCC入口串联一个小电阻?可以不加吗?

6、高薪工作机会分享。【找工作看这里

关注【电子芯期天】后台回复关键字免费资料。获取PCB封装库规范、PCB设计设计规范、华为EMC基础知识、开关电源入门知识等资料。



电子芯期天 致力于分享各种电子电路开发设计资料及经验.
评论
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 71浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 85浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 81浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 120浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 93浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 52浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 91浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 80浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 91浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 81浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 90浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 71浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 119浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦