Transformer再下一城!Swin-Unet:首个纯Transformer的医学图像分割网络

OpenCV学堂 2021-06-18 17:00

Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation

论文:https://arxiv.org/abs/2105.05537

代码:https://github.com/HuCaoFighting/Swin-Unet

首个基于纯Transformer的U-Net形的医学图像分割网络,其中利用Swin Transformer构建encoder、bottleneck和decoder,表现SOTA!性能优于TransUnet、Att-UNet等,代码即将开源!
作者单位:慕尼黑工业大学, 复旦大学, 华为(田奇等人)

摘要


在过去的几年中,卷积神经网络(CNN)在医学图像分析中取得了里程碑式的进展。尤其是,基于U形结构和skip-connections的深度神经网络已广泛应用于各种医学图像任务中。但是,尽管CNN取得了出色的性能,但是由于卷积操作的局限性,它无法很好地学习全局和远程语义信息交互。

在本文中,作者提出了Swin-Unet,它是用于医学图像分割的类似Unet的纯Transformer模型。标记化的图像块通过跳跃连接被送到基于Transformer的U形Encoder-Decoder架构中,以进行局部和全局语义特征学习。

具体来说,使用带有偏移窗口的分层Swin Transformer作为编码器来提取上下文特征。并设计了一个symmetric Swin Transformer-based decoder with patch expanding layer来执行上采样操作,以恢复特征图的空间分辨率。在对输入和输出进行4倍的下采样和上采样的情况下,对多器官和心脏分割任务进行的实验表明,基于纯Transformer的U-shaped Encoder-Decoder优于那些全卷积或者Transformer和卷积的组合。

框架结构


图1 Swin-Unet架构:由Encoder, Bottleneck, Decoder和Skip Connections组成。
Encoder, Bottleneck以及Decoder都是基于Swin-Transformer block构造的实现。

2.1 Swin Transformer block

图2 Swin Transformer block

与传统的multi-head self attention(MSA)模块不同,Swin Transformer是基于平移窗口构造的。在图2中,给出了2个连续的Swin Transformer Block。每个Swin Transformer由LayerNorm(LN)层、multi-head self attention、residual connection和2个具有GELU的MLP组成。在2个连续的Transformer模块中分别采用了windowbased multi-head self attention(W-MSA)模块和 shifted window-based multi-head self attention (SW-MSA)模块。基于这种窗口划分机制的连续Swin Transformer Block可表示为:

其中,分别表示(S)W-MSA模块和第块的MLP模块的输出。

与前面的研究ViT类似,self attention的计算方法如下:

其中,表示query、key和value矩阵。分别表示窗口中patch的数量和query或key的维度。value来自偏置矩阵


2.2 Encoder

在Encoder中,将分辨率为维tokenized inputs输入到连续的2个Swin Transformer块中进行表示学习,特征维度和分辨率保持不变。同时,patch merge layer会减少Token的数量(2×downsampling),将特征维数增加到2×原始维数。此过程将在Encoder中重复3次。

Patch merging layer

输入patch分为4部分,通过Patch merging layer连接在一起。这样的处理会使特征分辨率下降2倍。并且,由于拼接操作的结果是特征维数增加了4倍,因此在拼接的特征上加一个线性层,将特征维数统一为原始维数的2倍。

2.3 Decoder

与Encoder相对应的是基于Swin Transformer block的Symmetric Decoder。为此,与编码器中使用的patch merge层不同,我们在解码器中使用patch expand层对提取的深度特征进行上采样。patch expansion layer将相邻维度的特征图重塑为更高分辨率的特征图(2×上采样),并相应地将特征维数减半。

Patch expanding layer

以第1个Patch expanding layer为例,在上采样之前,对输入特征加一个线性层,将特征维数增加到原始维数的2倍。然后,利用rearrange operation将输入特征的分辨率扩大到输入分辨率的2倍,将特征维数降低到输入维数的1/4,即

Up-Sampling会带来什么影响?

针对Encoder中的patch merge层,作者在Decoder中专门设计了Patch expanding layer,用于上采样和特征维数增加。为了探索所提出Patch expanding layer的有效性,作者在Synapse数据集上进行了双线性插值、转置卷积和Patch expanding layer的Swin-Unet实验。实验结果表明,本文提出的Swin-Unet结合Patch expanding layer可以获得更好的分割精度。

2.4 Bottleneck

由于Transformer太深导致收敛比较困难,因此使用2个连续Swin Transformer blocks来构造Bottleneck以学习深度特征表示。在Bottleneck处,特征维度和分辨率保持不变。

2.5 Skip connection

与U-Net类似,Skip connection用于融合来自Encoder的多尺度特征与上采样特征。这里将浅层特征和深层特征连接在一起,以减少降采样带来的空间信息损失。然后是一个线性层,连接特征尺寸保持与上采样特征的尺寸相同。

skip connections数量的影响?

Swin-UNet在1/4,1/8和1/16的降采样尺度上添加了skip connections。通过将skip connections数分别更改为0、1、2和3,实验了不同skip connections数量对模型分割性能的影响。从下表中可以看出,模型的性能随着skip connections数的增加而提高。因此,为了使模型更加鲁棒,本工作中设置skip connections数为3。


实验结果

3.1 Synapse数据集

3.2 ACDC数据集

就很多基于Transformer的文章和已经开源的代码来看,模型的预训练会严重影响基于Transformer模型的性能。其实作者在文章的最后也提到了他们也是直接使用Swin-Transformer在ImageNet上的预训练权值来初始化网络的Encoder和Decoder的,这可能是一个次优方案。不过作者也在努力尝试实现完全端到端的实验了(此处点赞)。


END

OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 35浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 63浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 69浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 33浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 86浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 110浏览
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 42浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 109浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 82浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 30浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 74浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 83浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 68浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦