精品课程:雷达探测与对抗-雷达接收机

云脑智库 2021-06-18 00:00


什么是超外差:

超外差接收机是利用本地产生的振荡波与输入信号混频,将输入信号频率变换为某个预先确定的频率的方法。

超外差原理如图。本地振荡器产生频率为 的等幅正弦信号f1,输入信号是一中心频率为fc 的已调制频带有限信号 。这两个信号在混频器中变频,输出为差频分量,fc称为中频信号,fc 为中频频率。图 表示输入为调幅信号的频谱和波形图。输出的中频信号除中心频率由变换到fi外,其频谱结构与输入信号相同。因此,中频信号保留了输入信号的全部有用信息。超外差原理的典型应用是超外差接收机。从天线接收的信号经高频放大器放大,与本地振荡器产生的信号一起加入混频器变频,得到中频信号,再经中频放大、检波和低频放大,然后送给用户。接收机的工作频率范围往往很宽,在接收不同频率的输入信号时,可以用改变本地振荡频率 的方法使混频后的中频 保持为固定的数值。 

 

 

混频器是输出信号频率等于两输入信号频率之和、差或为两者其他组合的电路。混频器通常由非线性元件和选频回路构成。混频器位于低噪声放大器 (LNA )之后 , 直接处理 LNA 放大后的射频信号。为实现混频功能, 混频器还需要接收来自压控振荡器的本振 (LO)信号 ,其电路完全工作在射频频段。

混频器将天线上接收到的射频信号与本振产生的信号相乘,cosαcosβ=[cos(α+β)+cos(α-β)]/2

混频电路的输入是载频为fc的高频已经调制信号us和频率为fL的本地正弦波信号(本振信号)ul,输出是中频为fI的已调波信号uI,通常取fI=fL-fc。经过混频后,信号的中频频率凶fc平移到中心频率fI附近,频谱的宽度不变,包络信号的形成不变。

可以这样理解,α为射频信号频率量,β为本振频率量,产生和差频。当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。检波后的信号被视频放大器进行放大,然后显示出来。由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。

当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。

从频谱观点看,混频的作用就是将已调波的频谱不失真地从fc搬移到中频的位置上,因此,混频电路是一种典型的频谱搬移电路,可以用相乘器和带通滤波器来实现这种搬移。

混频过程中会产生很多的组合频率分量 : p f L ±qf S 。一般来讲 ,其中满足需要的仅仅是 f I =f L -f S 或者是f I =f S -f L 。前者产生中频的方式称为高差式混频 , 后者称为低差式混频 。在这里 ,混频过程中产生的一系列组合频率分量经过带通滤波器即可以选择输出相应的中频 ,而其他的频率分量会得到抑制

一个给定的射频信号,具有理想本振的理想混频器只产生两个信号输出,一个是射频与本振只和,一个是射频与本振只差,通过滤波器选取所希望的信号,选取IF频率比RF频率低,称之为下变频,反之为上变频。


镜像频率干扰是超外差式接收机特有的现象,假设信号频率为fs,振荡频率为flo,中频为fif=flo-fs。如果在比fs高二个中频出有一个有一个信号频率fm,它是以flo为镜子,站在fs出看到的镜像,所以称像频。

这个信号和本振信号通过混频,都得到中频的分类,然后进入中频处理,产生了混叠。这种干扰叫做镜像干扰。

如何消除镜像干扰:上变频的方式,采用高中频,像频率出现在fm=fs+2fif出,镜像频率会相对比较高

实际混频器的频谱图,从图中可以看出,混频器输出大量附近的,不希望的成分,包括混频器RF和LO的基波、谐波以及基波和谐波的和差分量,这些成分会危害射频系统,比如产生杂散,造成噪声恶化等等。

镜像频率:RF与LO会产生镜像频率=2LO-RF,镜像频率也会对射频系统产生干扰

镜像频率干扰是超外差接收机特有的现象,设信号频率为fs,振荡频率为fc,中频fid=fc-fs, 在比fs高二个fid处就有一个频率fm,,它象是以fc为镜子,站在fs处看到的镜像,所以称像频。镜像干扰是超外差式接收机特有的干扰,对付它只能通过提高一中频频率(或采用上变频方式)或提高高放电路Q值去抵制,而不能通过中放以后的电路减少或消除。

普通调幅收音机的本机振荡频率-接收频率=465KHz

只要满足“本机振荡频率-接收频率=465KHz”这个条件,收音机就能收到这个电台。但是,由于变频器的性质所决定,如果满足了“接收频率-本机振荡频率=465KHz”这个条件,收音机也能收到这个电台。

比如,一个收音机正在收听频率为548KHz的电台,此时收音机的振荡频率为548+465=1013KHz,如果在1478KHz的频率上也有一个电台正在工作,那么,因为1478-1013=465,所以,此时这个收音机可以同时收听到这两个电台的播音,只是548KHz的声音大,1478KHz的声音小,1478KHz就作为一个干扰出现了,这个干扰就是收音机的镜像干扰。

镜像干扰是超外差式接收机特有的干扰,对付它只能通过提高一中频频率(或采用上变频方式)或提高高放电路Q值去抵制,而不能通过中放以后的电路减少或消除 。

什么叫二次变频:   

所谓二次变频就是先将电台信号变频到第一中频(如9702的10.7MHz),再将该第一中频通过第二次变频变换到通常的455kHz即第二中频。镜频抑制能力和变频的级数以及第一中频频率有着很复杂的数学关系,增加变频级数和使用较高的第一中频频率都有利于提高镜频抑制。   

其实仅从原理上看也能有所了解,同样以15480kHz为例,第一中频为10.7MHz,那么本振频率为26180 kHz,镜频为36880 kHz,与15480kHz

相差十万八千里(相对于一次外差大了很多),即使是4波段的短波II接收范围在7~22 MHz的最高段也还差14 MHz,应该是都被抑制了。   

由于提高了镜频抑制,就可以放心的使用各种提高灵敏度的手段。有些专业的接收机甚至有4次变频。变频级数的增加会大大提高成本,而所得到的性能提高并不成正比的,就象HiFi一样,为了最后一点音质的提高,几乎要花费以前的所有投入,因此二次变频使用最多。

最初的接收机属于直放式接收机,它的特点是,从天线上接收到的高频信号,在检波以前,一直不改变它原来的高频频率(即高频信号直接放大)。它的缺点是,在接收频段的高端和低段的放大不一样,整个波段的灵敏度不均匀。如果是多波段收音机,这个矛盾更突出。其次,如果要提高灵敏度,必须增加高频放大的级数,由此带来各级之间的统一调谐的困难,而且高频放大器增益做不高,容易产生自激。   

如果能够把接收机接收到的高频信号,都变换成固定的中频信号进行放大检波。由于中频频率比变换前的信号频率低,而且频率固定不变,所以任何电台的信号都能得到相等的放大量,同时总的放大量也可以较高。从而克服了上述矛盾。   

典型的超外差式接收机的框图可见,振荡器产生一个始终比接收信号高一个中频频率的振荡信号,在混频器内利用晶体管的非线性将振荡信号与接收信号相减产生一个新的频率即中频,这就是“外差”。

雷达接收机的任务是通过预选、放大、变频、滤波、解调和数字化处理等方法,从雷达天线接收到的各种外来干扰、杂波和接收机内部噪声中提取、放大微弱的有用目标回波信号,以满足信号处理和数据处理的需要。

超外差式雷达接收机的简化方框图如图所示。它的主要组成部分是: 

(1) 高频部分, 又称为接收机“前端”, 包括接收机保护器、低噪声高频放大器、混频器和本机振荡器; 

(2) 中频放大器, 包括匹配滤波器;

(3) 检波器和视频放大器。

 从天线接收的高频回波通过收发开关加至接收机保护器, 一般是经过低噪声高频放大器后再送到混频器。在混频器中, 高频回波脉冲信号与本机振荡器的等幅高频电压混频, 将信号频率降为中频(IF),

再由多级中频放大器对中频脉冲信号进行放大和匹配滤波, 以获得最大的输出信噪比, 最后经过检波器和视频放大后送至终端处理设备。

更为通用的超外差式雷达接收机的组成方框图如图所示。它适用于收、发公用天线的各种脉冲雷达系统。实际的雷达接收机可以不(而且通常也不)包括图中所示的全部部件 。

灵敏度时间增益控制(STC-Sensitivity Tim Control)使接收机的增益在发射机发射之后, 按R-4规律随时间而增加, 以避免近距离的强回波使接收机过载饱和。灵敏度时间控制又称为近程增益控制, 可以加到高频放大器和前置中频放大器中。自动增益控制(AGC-Automatic Gain Control)是一种反馈技术, 用来自动调整接收机的增益, 以便在雷达系统跟踪环路中保持适当的增益范围。 

对于非相参雷达接收机, 通常需要采用自动频率微调(AFC)电路, 把本机振荡器调谐到比发射频率高或低一个中频的频率。而在相干接收机中, 稳定本机振荡器(STALO)的输出是由用来产生发射信号的相干源(频率合成器)提供的。 

输入的高频信号与稳定本机振荡信号或本机振荡器输出相混频, 将信号频率降为中频。信号经过多级中频放大和匹配滤波后, 可以对其采用几种处理方法。对于非相干检测, 通常采用线性放大器和包络检波器来为检测电路和显示设备提供信息。当要求宽的瞬时动态范围时, 可以采用对数放大器—检波器, 对数放大器能提供大于80 dB的有效动态范围。 

对于相干处理, 中频放大和中频滤波之后有二种处理方法, 见图。第一种方法是经过线性放大器后进行同步检波, 同步检波器输出的同相(I)和正交(Q)的基带多卜勒信号提供了回波的振幅信息和相位信息。第二种方法是经过硬限幅放大(幅度恒定)后进行相位检波, 此时正交相位检波器只能保留回波信号的相位信息。        

为什么要进行增益控制?简单而言,就是在追求更大的接收机动态范围的同时,防止强信号引起的接收机过载。增益控制有两类,一类是自动增益控制,一类是灵敏度时间控制,

在跟踪雷达中, 为了保证对目标的自动方向跟踪, 要求接收机输出的角误差信号强度只与目标偏离天线轴线的夹角(称为“误差角”)有关, 而与目标距离的远近、目标反射面积的大小等因素无关。为了得到这种归一化的角误差信号,使天线正确地跟踪运动目标, 必须采用自动增益控制(AGC)。是使放大电路的增益自动地随信号强度而调整的自动控制方法,可以对放大器增益进行自动调节,在实际中可实现自动测角。它核心的工作原理是使接收机的增益随着时间(或者对应的距离)增加而增加。

 图示出了一种简单的AGC电路方框图, 它由一级峰值检波器和低通滤波器组成。接收机输出的视频脉冲信号, 经过峰值检波, 再由低通滤波器除去高频成分之后, 就得到自动增益控制电压UAGC, 将它加到被控的中频放大器中去, 就完成了增益的自动控制作用。当输入信号增大时, 视频放大器输出uo随之增大, 引起控制电压UAGC增加, 从而使受控中频放大器的增益降低;当输入信号减小时, 情况正好相反, 即中频放大器的增益将要增大。因此自动增益控制电路是一个负反馈系统。 

对于一个由远而近飞行的目标而言,接收机的输出信号能保持稳定。

灵敏度时间控制主要的目的是为了扩展接收机的动态范围,防止近程的杂波使接收机过载。也称为近程增益控制,它是某些探测雷达使用的一种随作用距离R减小(R↓)而降低接收机灵敏度(Simin↑)的技术。

使接收机不受近距离的杂波干扰而过载饱和。在远距离时使接收机保持原来的增益和灵敏度,以保证正常发现和检测小目标回波信号。

最核心的原理是:每当发射机发射信号之后,接收机产生一个与干扰功率随时间变化规律相匹配的控制电压,控制接收机的增益按比规律变化。

杂波干扰(如海浪杂波和地物杂波干扰等)主要出现在近距离, 干扰功率随着距离的增加而相对平滑地减小, 如图所示。如果把发射信号时刻作为距离的起点, 则横轴实际上也就是时间轴。 

根据试验, 海浪杂波干扰功率Pim随距离R的变化规律为 

式中,K为比例常数, 它与雷达的发射功率等因素有关; a为由试验条件所确定的系数, 它与天线波瓣形状等有关, 一般a=2.7~4.7。

近程增益控制的基本原理是: 当发射机每次发射信号之后, 接收机产生一个与干扰功率随时间的变化规律相“匹配”的控制电压UC, 如图所示, 控制接收机的增益按此规律变化。所以近程增益控制电路实际上是一个使接收机灵敏度随时间而变化的控制电路, 它可以使接收机不致受近距离的杂波干扰而过载。 

灵敏度表示接收机接收微弱信号的能力。能接收的信号越微弱, 则接收机的灵敏度越高, 因而雷达的作用距离就越远。

雷达接收机的灵敏度通常用最小可检测信号功率Si min来表示。当接收机的输入信号功率达到Si min时, 接收机就能正常接收而在输出端检测出这一信号。

噪声系数F的定义是:接收机输入端的信号噪声功率比与输出端信号噪声功率之比。

如果信号功率低于此值, 信号将被淹没在噪声干扰之中, 不能被可靠地检测出来, 如图所示。由于雷达接收机的灵敏度受噪声电平的限制, 因此要想提高它的灵敏度, 就必须尽力减小噪声电平, 同时还应使接收机有足够的增益。  

超外差式雷达接收机的灵敏度一般约为(10-12-10-14)W, 保证这个灵敏度所需增益约为106-108(120 dB-160 dB), 这一增益主要由中频放大器来完成。 

水平和垂直坐标分别代表目标的范围和回波幅度。

接收机的工作频带宽度表示接收机的瞬时工作频率范围。在复杂的电子对抗和干扰环境中, 要求雷达发射机和接收机具有较宽的工作带宽, 例如频率捷变雷达要求接收机的工作频带宽度为(10~20)%。接收机的工作频带宽度主要决定于高频部件(馈线系统、高频放大器和本机振荡器)的性能。接收机的工作频带较宽时, 必须选择较高的中频, 以减少混频器输出的寄生响应对接收机性能的影响。 

接收机中频的选择和滤波特性是接收机的重要质量指标之一。中频的选择与发射波形的特性、 接收机的工作带宽以及所能提供的高频部件和中频部件的性能有关。在现代雷达接收机中, 中频的选择可以从30 MHz到4GHz之间。当需要在中频增加某些信号处理部件, 如脉冲压缩滤波器, 对数放大器和限幅器等时, 从技术实现来说, 中频选择在30MHz至500MHz更为合适。对于宽频带工作的接收机, 应选择较高的中频, 以便使虚假的寄生响应减至最小。         

减小接收机噪声的关键参数是中频的滤波特性, 如果中频滤波特性的带宽大于回波信号带宽, 则过多的噪声进入接收机。反之, 如果所选择的带宽比信号带宽窄, 信号能量将会损失。这两种情况都会使接收机输出的信噪比减小。在白噪声(即接收机热噪声)背景下, 接收机的频率特性为“匹配滤波器”时, 输出的信号噪声比最大。

       

动态范围表示接收机能够正常工作所容许的输入信号强度变化的范围。最小输入信号强度通常取为最小可检测信号功率Si min, 允许最大的输入信号强度则根据正常工作的要求而定。当输入信号太强时, 接收机将发生饱和而失去放大作用, 这种现象称为过载。使接收机开始出现过载时的输入功率与最小可检测功率之比, 叫做动态范围。为了保证对强弱信号均能正常接收, 要求动态范围大, 就需要采取一定措施, 例如采用对数放大器、 各种增益控制电路等抗干扰措施。 

一般来说, 工作稳定性是指当环境条件(例如温度、 湿度、 机械振动等)和电源电压发生变化时, 接收机的性能参数(振幅特性、 频率特性和相位特性等)受到影响的程度, 希望影响越小越好。

大多数现代雷达系统需要对一串回波进行相参处理, 对本机振荡器的短期频率稳定度有极高的要求(高达10-10或者更高), 因此,必须采用频率稳定度和相位稳定度极高的本机振荡器, 即简称的“稳定本振”。

在现代电子战和复杂的电磁干扰环境中, 抗有源干扰和无源干扰是雷达系统的重要任务之一。有源干扰为敌方施放的各种杂波干扰和邻近雷达的异步脉冲干扰, 无源干扰主要是指从海浪、雨雪、地物等反射的杂波干扰和敌机施放的箔片干扰。这些干扰严重影响对目标的正常检测, 甚至使整个雷达系统无法工作。现代雷达接收机必须具有各种抗干扰电路。当雷达系统用频率捷变方法抗干扰时, 接收机的本振应与发射机频率同步跳变。同时接收机应有足够大的动态范围, 以保证后面的信号处理器有高的处理精度。 


—  The End  —


声明本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。


投稿/招聘/推广/宣传/合作/入群 请加微信:liuyuanzhu



▼ 戳#阅读原文# ,加入#知识星球#精彩继续#分享/收藏/赞/在看#

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论 (0)
  • 技术原理:非扫描式全局像的革新Flash激光雷达是一种纯固态激光雷达技术,其核心原理是通过面阵激光瞬时覆盖探测区域,配合高灵敏度传感器实现全局三维成像。其工作流程可分解为以下关键环节:1. 激光发射:采用二维点阵光源(如VCSEL垂直腔面发射激光器),通过光扩散器在单次脉冲中发射覆盖整个视场的面阵激光,视场角通常可达120°×75°,部分激光雷达产品可以做到120°×90°的超大视场角。不同于传统机械扫描或MEMS微振镜方案,Flash方案无需任何移动部件,直接通过电信号控制激光发射模式。2.
    robolab 2025-04-10 15:30 90浏览
  • 行业痛点:电动车智能化催生语音交互刚需随着全球短途出行市场爆发式增长,中国电动自行车保有量已突破3.5亿辆。新国标实施推动行业向智能化、安全化转型,传统蜂鸣器报警方式因音效单一、缺乏场景适配性等问题,难以满足用户对智能交互体验的需求。WT2003HX系列语音芯片,以高性能处理器架构与灵活开发平台,为两轮电动车提供从基础报警到智能交互的全栈语音解决方案。WT2003HX芯片技术优势深度解读1. 高品质硬件性能,重塑语音交互标准搭载32位RISC处理器,主频高达120MHz,确保复杂算法流畅运行支持
    广州唯创电子 2025-04-10 09:12 164浏览
  • 什么是车用高效能运算(Automotive HPC)?高温条件为何是潜在威胁?作为电动车内的关键核心组件,由于Automotive HPC(CPU)具备高频高效能运算电子组件、高速传输接口以及复杂运算处理、资源分配等诸多特性,再加上各种车辆的复杂应用情境等等条件,不难发见Automotive HPC对整个平台讯号传输实时处理、系统稳定度、耐久度、兼容性与安全性将造成多大的考验。而在各种汽车使用者情境之中,「高温条件」就是你我在日常生活中必然会面临到的一种潜在威胁。不论是长时间将车辆停放在室外的高
    百佳泰测试实验室 2025-04-10 15:09 71浏览
  •     前几天同事问我,电压到多少伏就不安全了?考虑到这位同事的非电专业背景,我做了最极端的答复——多少伏都不安全,非专业人员别摸带电的东西。    那么,是不是这么绝对呢?我查了一下标准,奇怪的知识增加了。    标准的名字值得玩味——《电流对人和家畜的效应》,GB/T 13870.5 (IEC 60749-5)。里面对人、牛、尸体分类讨论(搞硬件的牛马一时恍惚,不知道自己算哪种)。    触电是电流造成的生理效应
    电子知识打边炉 2025-04-09 22:35 181浏览
  • 行业变局:从机械仪表到智能交互终端的跃迁全球两轮电动车市场正经历从“功能机”向“智能机”的转型浪潮。数据显示,2024年智能电动车仪表盘渗透率已突破42%,而传统LED仪表因交互单一、扩展性差等问题,难以满足以下核心需求:适老化需求:35%中老年用户反映仪表信息辨识困难智能化缺口:78%用户期待仪表盘支持手机互联与语音交互成本敏感度:厂商需在15元以内BOM成本实现功能升级在此背景下,集成语音播报与蓝牙互联的WT2605C-32N芯片方案,以“极简设计+智能交互”重构仪表盘技术生态链。技术破局:
    广州唯创电子 2025-04-11 08:59 122浏览
  • 政策驱动,AVAS成新能源车安全刚需随着全球碳中和目标的推进,新能源汽车产业迎来爆发式增长。据统计,2023年中国新能源汽车渗透率已突破35%,而欧盟法规明确要求2024年后新能效车型必须配备低速提示音系统(AVAS)。在此背景下,低速报警器作为车辆主动安全的核心组件,其技术性能直接关乎行人安全与法规合规性。基于WT2003H芯片开发的AVAS解决方案,以高可靠性、强定制化能力及智能场景适配特性,正成为行业技术升级的新标杆。WT2003H方案技术亮点解析全场景音效精准触发方案通过多传感器融合技术
    广州唯创电子 2025-04-10 08:53 190浏览
  • 文/Leon编辑/侯煜‍关税大战一触即发,当地时间4月9日起,美国开始对中国进口商品征收总计104%的关税。对此,中国外交部回应道:中方绝不接受美方极限施压霸道霸凌,将继续采取坚决有力措施,维护自身正当权益。同时,中国对原产于美国的进口商品加征关税税率,由34%提高至84%。随后,美国总统特朗普在社交媒体宣布,对中国关税立刻提高至125%,并暂缓其他75个国家对等关税90天,在此期间适用于10%的税率。特朗普政府挑起关税大战的目的,实际上是寻求制造业回流至美国。据悉,特朗普政府此次宣布对全球18
    华尔街科技眼 2025-04-10 16:39 95浏览
  •   海上电磁干扰训练系统:全方位解析      海上电磁干扰训练系统,作为模拟复杂海上电磁环境、锻炼人员应对电磁干扰能力的关键技术装备,在军事、科研以及民用等诸多领域广泛应用。接下来从系统构成、功能特点、技术原理及应用场景等方面展开详细解析。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   一、系统构成   核心组件   电磁信号模拟设备:负责生成各类复杂的电磁信号,模拟海上多样
    华盛恒辉l58ll334744 2025-04-10 16:45 103浏览
  • ‌亥姆霍兹线圈‌是由两组相同的线圈组成,线圈之间的距离等于它们的半径。当电流同时流过这两个线圈时,会在它们中间形成一个几乎均匀的磁场。这种设计克服了普通线圈磁场不均匀的缺陷,能够在中心区域形成稳定、均匀的磁场‌。‌亥姆霍兹线圈的应用领域‌包括材料、电子、生物、医疗、航空航天、化学、应用物理等各个学科。由于其操作简便且能够提供极微弱的磁场直至数百高斯的磁场,亥姆霍兹线圈在各研究所、高等院校及企业中被广泛用于物质磁性或检测实验。‌亥姆霍兹线圈可以根据不同的标准进行分类‌:‌按磁场方向分类‌:‌一维亥
    锦正茂科技 2025-04-09 17:20 135浏览
  •   卫星故障预警系统软件:卫星在轨安全的智能护盾   北京华盛恒辉卫星故障预警系统软件,作为确保卫星在轨安全运行的关键利器,集成前沿的监测、诊断及预警技术,对卫星健康状况予以实时评估,提前预判潜在故障。下面将从核心功能、技术特性、应用场景以及发展走向等方面展开详尽阐述。   应用案例   目前,已有多个卫星故障预警系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星故障预警系统。这些成功案例为卫星故障预警系统的推广和应用提供了有力支持。   核心功能   实时状态监测:
    华盛恒辉l58ll334744 2025-04-09 19:49 159浏览
  • 由西门子(Siemens)生产的SIMATIC S7 PLC在SCADA 领域发挥着至关重要的作用。在众多行业中,SCADA 应用都需要与这些 PLC 进行通信。那么,有哪些高效可行的解决方案呢?宏集为您提供多种选择。传统方案:通过OPC服务器与西门子 PLC 间接通信SIMATIC S7系列的PLC是工业可编程控制器,能够实现对生产流程的实时SCADA监控,提供关于设备和流程状态的准确、最新数据。S7Comm(全称S7 Communication),也被称为工业以太网或Profinet,是西门
    宏集科技 2025-04-10 13:44 78浏览
  •   天空卫星健康状况监测维护管理系统:全方位解析  在航天技术迅猛发展的当下,卫星在轨运行的安全与可靠至关重要。整合多种技术,实现对卫星的实时监测、故障诊断、健康评估以及维护决策,有力保障卫星长期稳定运转。  应用案例       系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。  一、系统架构与功能模块  数据采集层  数据处理层  智能分析层  决策支持层  二、关键技术  故障诊断技术  
    华盛恒辉l58ll334744 2025-04-10 15:46 66浏览
  • 背景近年来,随着国家对资源、能源有效利用率的要求越来越高,对环境保护和水处理的要求也越来越严格,因此有大量的固液分离问题需要解决。真空过滤器是是由负压形成真空过滤的固液分离机械。用过滤介质把容器分为上、下两层,利用负压,悬浮液加入上腔,在压力作用下通过过滤介质进入下腔成为滤液,悬浮液中的固体颗粒吸附在过滤介质表面形成滤饼,滤液穿过过滤介质经中心轴内部排出,达到固液分离的目的。目前市面上的过滤器多分为间歇操作和连续操作两种。间歇操作的真空过滤机可过滤各种浓度的悬浮液,连续操作的真空过滤机适于过滤含
    宏集科技 2025-04-10 13:45 72浏览
我要评论
0
2
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦