干货 | 分享一个实用的、可应用于单片机的内存管理模块

原创 嵌入式大杂烩 2021-06-17 22:00

点击上方「嵌入式大杂烩」,选择「置顶公众号」第一时间查看嵌入式笔记!

本次给大家分享一位大佬写的应用于单片机内存管理模块mem_malloc,这个mem_malloc的使用不会产生内存碎片,可以高效利用单片机ram空间。

mem_malloc代码仓库:

https://github.com/chenqy2018/mem_malloc

mem_malloc介绍

一般单片机的内存都比较小,而且没有MMU,malloc 与free的使用容易造成内存碎片。而且可能因为空间不足而分配失败,从而导致系统崩溃,因此应该慎用,或者自己实现内存管理。

mem_malloc就是一个不会产生内存碎片的、适合单片机使用的内存管理模块。其与使用malloc的区别如:

「算法原理:」

定义一个数组作为动态分配的堆空间,低地址空间保存管理数据,高地址空间实际分配给用户的缓存(类似堆栈使用,分配是往中间靠拢),free时移动高地址用户空间(以时间换空间),使得未使用的空间都是连续的。

mem_malloc测试验证

下面以小熊派IOT开发板来做实验。

实验过程很简单。准备一份开发板带串口打印的工程,下载mem_malloc,把mem_malloc.c、mem_malloc.h复制到工程目录下,并添加到工程里:

然后进行编译,编译过程可能会报错:

..\Src\mem_malloc.c(119): error:  #852: expression must be a pointer to a complete object type

这份代码在不同编译器下编译情况不同。gcc下编译不会报错,在keil下编译报如上错误。

keil编译器更严格些。报错原因是对mem_block结构体的mem_ptr成员进行操作,而mem_ptr成员的类型是void*,而mem_ptr成员参与运算时的增、减偏移量取决于mem_ptr的类型,所以这里我们需要指定类型。

我们把相关报错代码修改如:

再次编译就正常了。

下面简单看一下mem_malloc的代码。

「mem_malloc.h:」

#ifndef __MEM_MALLOC_H__
#define __MEM_MALLOC_H__

#ifdef __cplusplus
extern "C" {
#endif

#include <stdio.h> 
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>

#pragma pack(1)
typedef struct mem_block
{
 
    void   *mem_ptr;  
    unsigned int mem_size; 
    unsigned int mem_index;    
}mem_block;
#pragma pack()

#define MEM_SIZE        128


void print_mem_info(void);
void print_hex(char *data, int len);
void print_mem_hex(int size);
int mem_malloc(unsigned int msize);
int mem_realloc(int id, unsigned int msize);
void *mem_buffer(int id);
int mem_free(int id);


#ifdef __cplusplus
}
#endif

#endif

「mem_malloc.c:」

暂不贴出,感兴趣的小伙伴可以在上面的仓库地址自行下载阅读。在本公众号后台回复:mem_malloc,进行获取。

下面对mem_malloc进行测试验证。

测试代码作者也有给出,这里我们简单测试即可,进行了一些删减及增加了一些注释:

#include "mem_malloc.h"

char mem_id[10]={0};  // 10块内存块

void test_malloc(int i, int size)
{
 printf("------test_malloc-------\n");
 mem_id[i] = mem_malloc(size);
 if(mem_id[i] == 0)
 {
  printf("malloc --- fail\n");
  printf("size=%d\n", size);
 }
 else
 {
  char *p = mem_buffer(mem_id[i]);
        memset(p, i, size);
        printf("p = 0x%x, i=%d, id=%d, size=%d\n", (int)p, i, mem_id[i], size);
 }
 print_mem_hex(MEM_SIZE);
}

void test_buffer(int i, int size)
{
 printf("------test_buffer-------\n");
 printf("i=%d, id = %d, size=%d\n", i, mem_id[i], size);
 char *p = mem_buffer(mem_id[i]);
    if(p != NULL)
 {
  memset(p, 0xf0+i, size);
        print_mem_hex(MEM_SIZE);
 }
 else
 {
  printf("test_buffer---fail\n");
 }
}

void test_realloc(int i, int size)
{
 printf("------test_realloc-------\n");
    printf("i=%d, id = %d, size=%d\n", i, mem_id[i], size);
 int ret = mem_realloc(mem_id[i], size);
 if(ret)
 {
  char *p = mem_buffer(mem_id[i]);
  memset(p, 0xa0+i, size);
        print_mem_hex(MEM_SIZE);
 }
 else
 {
  printf("test_realloc---fail\n");
 }
}

void test_free(int i)
{
 printf("------test_free-------\n");
 printf("i=%d, id = %d\n", i, mem_id[i]);
 if(mem_free(mem_id[i]))
  print_mem_hex( MEM_SIZE);
}

void main(void)
{
 print_mem_info();   // 打印内存信息
 test_malloc(110); // 给申请一块10个字节的内存,标记内存块id为1
 test_malloc(28); // 给申请一块8个字节的内存,标记内存块id为2
 test_malloc(320); // 给申请一块20个字节的内存,标记内存块id为2

 test_free(2);  // 释放id为2的内存块的内存

 test_malloc(470); // 申请一块70个字节的内存

 test_free(1);       // 释放id为1的内存块内存

 test_buffer(320); // 获取id为3的内存块地址,并往这个内存块重新写入0xf0+i的数据

 test_realloc(310); // 重新分配内存,并往这个内存块重新写入0xa0+i的数据
 
 for(int i=0; i<10; i++)  // 释放所有内存块内存,已释放的不再重新释放
  test_free(i);

运行结果及解析:

这里设定一个128字节的数组作为堆空间使用。其中数组前面存放的是申请到的内存块的信息,包括内存块地址、大小、索引信息,这三个数据各占4个字节,共12个字节。这里有设计到一个大小端模式的问题,STM32平台为小端模式,即数据的低位存储在内存的低地址中。

申请的内存块从128字节的尾部开始分配,再次申请的内存块依次往前移,释放的内存,则整体内存块往后移动,内存块之前不留空隙,即不产生内存碎片。

以上就是本次的分享,如有错误,欢迎指出,谢谢!

猜你喜欢:

嵌入式大杂烩文章精选

一起DIY一个万能红外遥控器

长文 | C语言从入门到精通保姆级教程(上)

长文 | C语言从入门到精通保姆级教程(下)

在公众号聊天界面回复1024,可获取嵌入式资源;回复 ,可查看文章汇总。

文章都看完了不点个

嵌入式大杂烩 专注于嵌入式技术,包括但不限于C/C++、嵌入式、物联网、Linux等编程学习笔记,同时,内包含大量的学习资源。欢迎关注,一同交流学习,共同进步!
评论
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 100浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 7浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 447浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 457浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 501浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 436浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 468浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 491浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 1浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 475浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 170浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦