11种滤波算法程序大全(含源代码分享)

ittbank 2019-07-22 17:56

1、限幅滤波法(又称程序判断滤波法)

/*A、名称:限幅滤波法(又称程序判断滤波法)B、方法:    根据经验判断,确定两次采样允许的最大偏差值(设为A),    每次检测到新值时判断:    如果本次值与上次值之差<=A,则本次值有效,    如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。C、优点:    能有效克服因偶然因素引起的脉冲干扰。D、缺点:    无法抑制那种周期性的干扰。    平滑度差。E、整理:shenhaiyu 2013-11-01*/
int Filter_Value;int Value;
void setup() {  Serial.begin(9600);       // 初始化串口通信  randomSeed(analogRead(0)); // 产生随机种子  Value = 300;}
void loop() {  Filter_Value = Filter();       // 获得滤波器输出值  Value = Filter_Value;          // 最近一次有效采样的值,该变量为全局变量  Serial.println(Filter_Value); // 串口输出  delay(50);}
// 用于随机产生一个300左右的当前值int Get_AD() {  return random(295, 305);}
// 限幅滤波法(又称程序判断滤波法)#define FILTER_A 1int Filter() {  int NewValue;  NewValue = Get_AD();  if(((NewValue - Value) > FILTER_A) || ((Value - NewValue) > FILTER_A))    return Value;  else    return NewValue;}



2、中位值滤波法

/*A、名称:中位值滤波法B、方法:    连续采样N次(N取奇数),把N次采样值按大小排列,    取中间值为本次有效值。C、优点:    能有效克服因偶然因素引起的波动干扰;    对温度、液位的变化缓慢的被测参数有良好的滤波效果。D、缺点:    对流量、速度等快速变化的参数不宜。E、整理:shenhaiyu 2013-11-01*/
int Filter_Value;
void setup() {  Serial.begin(9600);       // 初始化串口通信  randomSeed(analogRead(0)); // 产生随机种子}
void loop() {  Filter_Value = Filter();       // 获得滤波器输出值  Serial.println(Filter_Value); // 串口输出  delay(50);}
// 用于随机产生一个300左右的当前值int Get_AD() {  return random(295, 305);}
// 中位值滤波法#define FILTER_N 101int Filter() {  int filter_buf[FILTER_N];  int i, j;  int filter_temp;  for(i = 0; i < FILTER_N; i++) {    filter_buf[i] = Get_AD();    delay(1);  }  // 采样值从小到大排列(冒泡法)  for(j = 0; j < FILTER_N - 1; j++) {    for(i = 0; i < FILTER_N - 1 - j; i++) {      if(filter_buf[i] > filter_buf[i + 1]) {        filter_temp = filter_buf[i];        filter_buf[i] = filter_buf[i + 1];        filter_buf[i + 1] = filter_temp;      }    }  }  return filter_buf[(FILTER_N - 1) / 2];}



3、算术平均滤波法

/*A、名称:算术平均滤波法B、方法:    连续取N个采样值进行算术平均运算:    N值较大时:信号平滑度较高,但灵敏度较低;    N值较小时:信号平滑度较低,但灵敏度较高;    N值的选取:一般流量,N=12;压力:N=4。C、优点:    适用于对一般具有随机干扰的信号进行滤波;    这种信号的特点是有一个平均值,信号在某一数值范围附近上下波动。D、缺点:    对于测量速度较慢或要求数据计算速度较快的实时控制不适用;    比较浪费RAM。E、整理:shenhaiyu 2013-11-01*/
int Filter_Value;
void setup() {  Serial.begin(9600);       // 初始化串口通信  randomSeed(analogRead(0)); // 产生随机种子}
void loop() {  Filter_Value = Filter();       // 获得滤波器输出值  Serial.println(Filter_Value); // 串口输出  delay(50);}
// 用于随机产生一个300左右的当前值int Get_AD() {  return random(295, 305);}
// 算术平均滤波法#define FILTER_N 12int Filter() {  int i;  int filter_sum = 0;  for(i = 0; i < FILTER_N; i++) {    filter_sum += Get_AD();    delay(1);  }  return (int)(filter_sum / FILTER_N);}



4、递推平均滤波法(又称滑动平均滤波法)

/*A、名称:递推平均滤波法(又称滑动平均滤波法)B、方法:    把连续取得的N个采样值看成一个队列,队列的长度固定为N,    每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出原则),    把队列中的N个数据进行算术平均运算,获得新的滤波结果。    N值的选取:流量,N=12;压力,N=4;液面,N=4-12;温度,N=1-4。C、优点:    对周期性干扰有良好的抑制作用,平滑度高;    适用于高频振荡的系统。D、缺点:    灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差;    不易消除由于脉冲干扰所引起的采样值偏差;    不适用于脉冲干扰比较严重的场合;    比较浪费RAM。E、整理:shenhaiyu 2013-11-01*/
int Filter_Value;
void setup() {  Serial.begin(9600);       // 初始化串口通信  randomSeed(analogRead(0)); // 产生随机种子}
void loop() {  Filter_Value = Filter();       // 获得滤波器输出值  Serial.println(Filter_Value); // 串口输出  delay(50);}
// 用于随机产生一个300左右的当前值int Get_AD() {  return random(295, 305);}
// 递推平均滤波法(又称滑动平均滤波法)#define FILTER_N 12int filter_buf[FILTER_N + 1];int Filter() {  int i;  int filter_sum = 0;  filter_buf[FILTER_N] = Get_AD();  for(i = 0; i < FILTER_N; i++) {    filter_buf[i] = filter_buf[i + 1]; // 所有数据左移,低位仍掉    filter_sum += filter_buf[i];  }  return (int)(filter_sum / FILTER_N);}



5、中位值平均滤波法(又称防脉冲干扰平均滤波法)

/*A、名称:中位值平均滤波法(又称防脉冲干扰平均滤波法)B、方法:    采一组队列去掉最大值和最小值后取平均值,    相当于“中位值滤波法”+“算术平均滤波法”。    连续采样N个数据,去掉一个最大值和一个最小值,    然后计算N-2个数据的算术平均值。    N值的选取:3-14。C、优点:    融合了“中位值滤波法”+“算术平均滤波法”两种滤波法的优点。    对于偶然出现的脉冲性干扰,可消除由其所引起的采样值偏差。    对周期干扰有良好的抑制作用。    平滑度高,适于高频振荡的系统。D、缺点:    计算速度较慢,和算术平均滤波法一样。    比较浪费RAM。E、整理:shenhaiyu 2013-11-01*/
int Filter_Value;
void setup() {  Serial.begin(9600);       // 初始化串口通信  randomSeed(analogRead(0)); // 产生随机种子}
void loop() {  Filter_Value = Filter();       // 获得滤波器输出值  Serial.println(Filter_Value); // 串口输出  delay(50);}
// 用于随机产生一个300左右的当前值int Get_AD() {  return random(295, 305);}
// 中位值平均滤波法(又称防脉冲干扰平均滤波法)(算法1)#define FILTER_N 100int Filter() {  int i, j;  int filter_temp, filter_sum = 0;  int filter_buf[FILTER_N];  for(i = 0; i < FILTER_N; i++) {    filter_buf[i] = Get_AD();    delay(1);  }  // 采样值从小到大排列(冒泡法)  for(j = 0; j < FILTER_N - 1; j++) {    for(i = 0; i < FILTER_N - 1 - j; i++) {      if(filter_buf[i] > filter_buf[i + 1]) {        filter_temp = filter_buf[i];        filter_buf[i] = filter_buf[i + 1];        filter_buf[i + 1] = filter_temp;      }    }  }  // 去除最大最小极值后求平均  for(i = 1; i < FILTER_N - 1; i++) filter_sum += filter_buf[i];  return filter_sum / (FILTER_N - 2);}

//  中位值平均滤波法(又称防脉冲干扰平均滤波法)(算法2)/*#define FILTER_N 100int Filter() {  int i;  int filter_sum = 0;  int filter_max, filter_min;  int filter_buf[FILTER_N];  for(i = 0; i < FILTER_N; i++) {    filter_buf[i] = Get_AD();    delay(1);  }  filter_max = filter_buf[0];  filter_min = filter_buf[0];  filter_sum = filter_buf[0];  for(i = FILTER_N - 1; i > 0; i--) {    if(filter_buf[i] > filter_max)      filter_max=filter_buf[i];    else if(filter_buf[i] < filter_min)      filter_min=filter_buf[i];    filter_sum = filter_sum + filter_buf[i];    filter_buf[i] = filter_buf[i - 1];  }  i = FILTER_N - 2;  filter_sum = filter_sum - filter_max - filter_min + i / 2; // +i/2 的目的是为了四舍五入  filter_sum = filter_sum / i;  return filter_sum;}*/



6、限幅平均滤波法

/*A、名称:限幅平均滤波法B、方法:    相当于“限幅滤波法”+“递推平均滤波法”;    每次采样到的新数据先进行限幅处理,    再送入队列进行递推平均滤波处理。C、优点:    融合了两种滤波法的优点;    对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。D、缺点:    比较浪费RAM。E、整理:shenhaiyu 2013-11-01*/
#define FILTER_N 12int Filter_Value;int filter_buf[FILTER_N];
void setup() {  Serial.begin(9600);       // 初始化串口通信  randomSeed(analogRead(0)); // 产生随机种子  filter_buf[FILTER_N - 2] = 300;}
void loop() {  Filter_Value = Filter();       // 获得滤波器输出值  Serial.println(Filter_Value); // 串口输出  delay(50);}
// 用于随机产生一个300左右的当前值int Get_AD() {  return random(295, 305);}
// 限幅平均滤波法#define FILTER_A 1int Filter() {  int i;  int filter_sum = 0;  filter_buf[FILTER_N - 1] = Get_AD();  if(((filter_buf[FILTER_N - 1] - filter_buf[FILTER_N - 2]) > FILTER_A) || ((filter_buf[FILTER_N - 2] - filter_buf[FILTER_N - 1]) > FILTER_A))    filter_buf[FILTER_N - 1] = filter_buf[FILTER_N - 2];  for(i = 0; i < FILTER_N - 1; i++) {    filter_buf[i] = filter_buf[i + 1];    filter_sum += filter_buf[i];  }  return (int)filter_sum / (FILTER_N - 1);}



7、一阶滞后滤波法

/*A、名称:一阶滞后滤波法B、方法:    取a=0-1,本次滤波结果=(1-a)*本次采样值+a*上次滤波结果。C、优点:    对周期性干扰具有良好的抑制作用;    适用于波动频率较高的场合。D、缺点:    相位滞后,灵敏度低;    滞后程度取决于a值大小;    不能消除滤波频率高于采样频率1/2的干扰信号。E、整理:shenhaiyu 2013-11-01*/
int Filter_Value;int Value;
void setup() {  Serial.begin(9600);       // 初始化串口通信  randomSeed(analogRead(0)); // 产生随机种子  Value = 300;}
void loop() {  Filter_Value = Filter();       // 获得滤波器输出值  Serial.println(Filter_Value); // 串口输出  delay(50);}
// 用于随机产生一个300左右的当前值int Get_AD() {  return random(295, 305);}
// 一阶滞后滤波法#define FILTER_A 0.01int Filter() {  int NewValue;  NewValue = Get_AD();  Value = (int)((float)NewValue * FILTER_A + (1.0 - FILTER_A) * (float)Value);  return Value;}



8、加权递推平均滤波法

/*A、名称:加权递推平均滤波法B、方法:    是对递推平均滤波法的改进,即不同时刻的数据加以不同的权;    通常是,越接近现时刻的数据,权取得越大。    给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。C、优点:    适用于有较大纯滞后时间常数的对象,和采样周期较短的系统。D、缺点:    对于纯滞后时间常数较小、采样周期较长、变化缓慢的信号;    不能迅速反应系统当前所受干扰的严重程度,滤波效果差。E、整理:shenhaiyu 2013-11-01*/
int Filter_Value;
void setup() {  Serial.begin(9600);       // 初始化串口通信  randomSeed(analogRead(0)); // 产生随机种子}
void loop() {  Filter_Value = Filter();       // 获得滤波器输出值  Serial.println(Filter_Value); // 串口输出  delay(50);}
// 用于随机产生一个300左右的当前值int Get_AD() {  return random(295, 305);}
// 加权递推平均滤波法#define FILTER_N 12int coe[FILTER_N] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};    // 加权系数表int sum_coe = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12; // 加权系数和int filter_buf[FILTER_N + 1];int Filter() {  int i;  int filter_sum = 0;  filter_buf[FILTER_N] = Get_AD();  for(i = 0; i < FILTER_N; i++) {    filter_buf[i] = filter_buf[i + 1]; // 所有数据左移,低位仍掉    filter_sum += filter_buf[i] * coe[i];  }  filter_sum /= sum_coe;  return filter_sum;}



9、消抖滤波法

/*A、名称:消抖滤波法B、方法:    设置一个滤波计数器,将每次采样值与当前有效值比较:    如果采样值=当前有效值,则计数器清零;    如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出);    如果计数器溢出,则将本次值替换当前有效值,并清计数器。C、优点:    对于变化缓慢的被测参数有较好的滤波效果;    可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。D、缺点:    对于快速变化的参数不宜;    如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统。E、整理:shenhaiyu 2013-11-01*/
int Filter_Value;int Value;
void setup() {  Serial.begin(9600);       // 初始化串口通信  randomSeed(analogRead(0)); // 产生随机种子  Value = 300;}
void loop() {  Filter_Value = Filter();       // 获得滤波器输出值  Serial.println(Filter_Value); // 串口输出  delay(50);}
// 用于随机产生一个300左右的当前值int Get_AD() {  return random(295, 305);}
// 消抖滤波法#define FILTER_N 12int i = 0;int Filter() {  int new_value;  new_value = Get_AD();  if(Value != new_value) {    i++;    if(i > FILTER_N) {      i = 0;      Value = new_value;    }  }  else    i = 0;  return Value;}



10、限幅消抖滤波法

/*A、名称:限幅消抖滤波法B、方法:    相当于“限幅滤波法”+“消抖滤波法”;    先限幅,后消抖。C、优点:    继承了“限幅”和“消抖”的优点;    改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统。D、缺点:    对于快速变化的参数不宜。E、整理:shenhaiyu 2013-11-01*/
int Filter_Value;int Value;
void setup() {  Serial.begin(9600);       // 初始化串口通信  randomSeed(analogRead(0)); // 产生随机种子  Value = 300;}
void loop() {  Filter_Value = Filter();       // 获得滤波器输出值  Serial.println(Filter_Value); // 串口输出  delay(50);}
// 用于随机产生一个300左右的当前值int Get_AD() {  return random(295, 305);}
// 限幅消抖滤波法#define FILTER_A 1#define FILTER_N 5int i = 0;int Filter() {  int NewValue;  int new_value;  NewValue = Get_AD();  if(((NewValue - Value) > FILTER_A) || ((Value - NewValue) > FILTER_A))    new_value = Value;  else    new_value = NewValue;  if(Value != new_value) {    i++;    if(i > FILTER_N) {      i = 0;      Value = new_value;    }  }  else    i = 0;  return Value;}



11、卡尔曼滤波(非扩展卡尔曼)

#include <Wire.h> // I2C library, gyroscope
// Accelerometer ADXL345#define ACC (0x53)    //ADXL345 ACC address#define A_TO_READ (6)        //num of bytes we are going to read each time (two bytes for each axis)

// Gyroscope ITG3200 #define GYRO 0x68 // gyro address, binary = 11101000 when AD0 is connected to Vcc (see schematics of your breakout board)#define G_SMPLRT_DIV 0x15   #define G_DLPF_FS 0x16   #define G_INT_CFG 0x17#define G_PWR_MGM 0x3E
#define G_TO_READ 8 // 2 bytes for each axis x, y, z

// offsets are chip specific. int a_offx = 0;int a_offy = 0;int a_offz = 0;
int g_offx = 0;int g_offy = 0;int g_offz = 0;////////////////////////
////////////////////////char str[512];
void initAcc() {  //Turning on the ADXL345  writeTo(ACC, 0x2D, 0);        writeTo(ACC, 0x2D, 16);  writeTo(ACC, 0x2D, 8);  //by default the device is in +-2g range reading}
void getAccelerometerData(int* result) {  int regAddress = 0x32;    //first axis-acceleration-data register on the ADXL345  byte buff[A_TO_READ];    readFrom(ACC, regAddress, A_TO_READ, buff); //read the acceleration data from the ADXL345    //each axis reading comes in 10 bit resolution, ie 2 bytes.  Least Significat Byte first!!  //thus we are converting both bytes in to one int  result[0] = (((int)buff[1]) << 8) | buff[0] + a_offx;     result[1] = (((int)buff[3]) << 8) | buff[2] + a_offy;  result[2] = (((int)buff[5]) << 8) | buff[4] + a_offz;}
//initializes the gyroscopevoid initGyro(){  /*****************************************  * ITG 3200  * power management set to:  * clock select = internal oscillator  *     no reset, no sleep mode  *   no standby mode  * sample rate to = 125Hz  * parameter to +/- 2000 degrees/sec  * low pass filter = 5Hz  * no interrupt  ******************************************/  writeTo(GYRO, G_PWR_MGM, 0x00);  writeTo(GYRO, G_SMPLRT_DIV, 0x07); // EB, 50, 80, 7F, DE, 23, 20, FF  writeTo(GYRO, G_DLPF_FS, 0x1E); // +/- 2000 dgrs/sec, 1KHz, 1E, 19  writeTo(GYRO, G_INT_CFG, 0x00);}

void getGyroscopeData(int * result){  /**************************************  Gyro ITG-3200 I2C  registers:  temp MSB = 1B, temp LSB = 1C  x axis MSB = 1D, x axis LSB = 1E  y axis MSB = 1F, y axis LSB = 20  z axis MSB = 21, z axis LSB = 22  *************************************/
  int regAddress = 0x1B;  int temp, x, y, z;  byte buff[G_TO_READ];    readFrom(GYRO, regAddress, G_TO_READ, buff); //read the gyro data from the ITG3200    result[0] = ((buff[2] << 8) | buff[3]) + g_offx;  result[1] = ((buff[4] << 8) | buff[5]) + g_offy;  result[2] = ((buff[6] << 8) | buff[7]) + g_offz;  result[3] = (buff[0] << 8) | buff[1]; // temperature  }

float xz=0,yx=0,yz=0;float p_xz=1,p_yx=1,p_yz=1;float q_xz=0.0025,q_yx=0.0025,q_yz=0.0025;float k_xz=0,k_yx=0,k_yz=0;float r_xz=0.25,r_yx=0.25,r_yz=0.25;  //int acc_temp[3];  //float acc[3];  int acc[3];  int gyro[4];  float Axz;  float Ayx;  float Ayz;  float t=0.025;void setup(){  Serial.begin(9600);  Wire.begin();  initAcc();  initGyro();  }
//unsigned long timer = 0;//float o;void loop(){    getAccelerometerData(acc);  getGyroscopeData(gyro);  //timer = millis();  sprintf(str, "%d,%d,%d,%d,%d,%d", acc[0],acc[1],acc[2],gyro[0],gyro[1],gyro[2]);    //acc[0]=acc[0];  //acc[2]=acc[2];  //acc[1]=acc[1];  //r=sqrt(acc[0]*acc[0]+acc[1]*acc[1]+acc[2]*acc[2]);  gyro[0]=gyro[0]/ 14.375;  gyro[1]=gyro[1]/ (-14.375);  gyro[2]=gyro[2]/ 14.375;       Axz=(atan2(acc[0],acc[2]))*180/PI;  Ayx=(atan2(acc[0],acc[1]))*180/PI;  /*if((acc[0]!=0)&&(acc[1]!=0))    {      Ayx=(atan2(acc[0],acc[1]))*180/PI;    }    else    {      Ayx=t*gyro[2];    }*/  Ayz=(atan2(acc[1],acc[2]))*180/PI;     //kalman filter  calculate_xz();  calculate_yx();  calculate_yz();    //sprintf(str, "%d,%d,%d", xz_1, xy_1, x_1);  //Serial.print(xz);Serial.print(",");  //Serial.print(yx);Serial.print(",");  //Serial.print(yz);Serial.print(",");  //sprintf(str, "%d,%d,%d,%d,%d,%d", acc[0],acc[1],acc[2],gyro[0],gyro[1],gyro[2]);  //sprintf(str, "%d,%d,%d",gyro[0],gyro[1],gyro[2]);    Serial.print(Axz);Serial.print(",");    //Serial.print(Ayx);Serial.print(",");    //Serial.print(Ayz);Serial.print(",");  //Serial.print(str);  //o=gyro[2];//w=acc[2];  //Serial.print(o);Serial.print(",");  //Serial.print(w);Serial.print(",");  Serial.print("\n");
    //delay(50);}void calculate_xz(){
xz=xz+t*gyro[1]; p_xz=p_xz+q_xz; k_xz=p_xz/(p_xz+r_xz); xz=xz+k_xz*(Axz-xz); p_xz=(1-k_xz)*p_xz;}void calculate_yx(){    yx=yx+t*gyro[2];  p_yx=p_yx+q_yx;  k_yx=p_yx/(p_yx+r_yx);  yx=yx+k_yx*(Ayx-yx);  p_yx=(1-k_yx)*p_yx;
}void calculate_yz(){  yz=yz+t*gyro[0];  p_yz=p_yz+q_yz;  k_yz=p_yz/(p_yz+r_yz);  yz=yz+k_yz*(Ayz-yz);  p_yz=(1-k_yz)*p_yz; }

//---------------- Functions//Writes val to address register on ACCvoid writeTo(int DEVICE, byte address, byte val) {   Wire.beginTransmission(DEVICE); //start transmission to ACC    Wire.write(address);        // send register address   Wire.write(val);        // send value to write   Wire.endTransmission(); //end transmission}

//reads num bytes starting from address register on ACC in to buff arrayvoid readFrom(int DEVICE, byte address, int num, byte buff[]) {  Wire.beginTransmission(DEVICE); //start transmission to ACC   Wire.write(address);        //sends address to read from  Wire.endTransmission(); //end transmission    Wire.beginTransmission(DEVICE); //start transmission to ACC  Wire.requestFrom(DEVICE, num);    // request 6 bytes from ACC    int i = 0;  while(Wire.available())    //ACC may send less than requested (abnormal)  {     buff[i] = Wire.read(); // receive a byte    i++;  }  Wire.endTransmission(); //end transmission}


来源:极客工坊

作者:shenhaiyu


  END  

ittbank 让电子库存因技术而改变的ITT模式电商平台。引领和适应市场,以共享经济理念的创客及工程师为核心、以免费开放用户生成的数据为基础,为其提供高性价比的应用解决方案和及时精准的供求信息,快速提高产品开发周期和生产直通率、提升电子器件的应用附加值。
评论 (0)
  • 在如今工业智能化快速发展的时代,工业HMI的响应速度、显示效果与系统稳定性已成为设备竞争力的核心要素。触觉智能RK3506核心板59元售价,深度融合LVGL开源图形框架,以2.5秒极速启动、20ms超低触控延时、400MB/s显示带宽的硬核性能,为工业HMI、智能终端等场景提供低成本、高可靠性的解决方案。LVGL图形界面库LVGL是什么LVGL(Light and Versatile Graphics Library)是一个免费的轻量级开源图形库。具有丰富部件与高级图形特性,支持多种输入设备和多
    Industio_触觉智能 2025-04-02 18:13 24浏览
  • 实例1:设置GPIO为输入或输出完成读取状态和驱动LED功能。下面这个电路使用3个gpio 用于读取拔码开关的设置和驱动3个LED流水灯显示。拔码开关在开机时需要读取一次。使用过程中不需要使用。如果单独使用3个GPIO口很浪费。电路功能是,如果GPIO设置为输入,则可读入拔码开关设置,设置为输出则能分别点亮3个LED灯。拔码开关使用优先编码器将输入6个位置转换成3个编码输出。(历史原因,这个编码器电路的设计得不好。),LED使用非门驱动。当FLOWLED设置为输入时,可以读入A0 A1 A2 的
    southcreek 2025-04-03 09:49 33浏览
  • 近日,飞凌嵌入式FET3576-C核心板正式发布了新系统Forlinx Desktop 24.04。至此,FET3576-C核心板已完成Linux 6.1、Android 14、Forlinx Desktop 24.04等多种操作系统的适配,充分展现了其在系统丰富性方面的卓越实力。1、多系统适配,满足多样化需求飞凌嵌入式FET3576-C核心板基于Rockchip RK3576处理器开发设计,该处理器集成了4个ARM Cortex-A72和4个ARM Cortex-A53高性能核,内置6TOPS
    飞凌嵌入式 2025-04-02 16:39 14浏览
  • 作为电气工程专业大三学生,期末实验周总能看到实验室外排着长队等设备的同学。今年开学,我终于不用再抢实验室了 —— thanks to 刚入手的 EGBox Nano,这个比手机大不了多少的 "掌上实验室",让我在宿舍床上就能完成整流电路实验。巴掌大的机身藏着硬核配置第一次从快递盒里拿出 EGBox Nano 时,着实吃了一惊。84*181*51mm 的尺寸比我的 iPhone 大不了多少,600 克的重量塞进书包毫无压力。对比室友那台占满整张桌子的传统 HIL 设备,这个 "掌中宝" 简直是降维
    不喝酒的就下班 2025-04-03 10:29 56浏览
  • 教大家介绍在更换用户名和修改密码的方法,此方法不适用于Buildroot系统。使用触觉智能RK3568工控主板(型号为IDO-SBC3528)演示,搭载了瑞芯微RK3568四核处理器,板载2路RS232+4路隔离RS485,集成DIDO,自研RS485自动收发驱动,支持超2KM传输距离,并率先适配了电鸿物联操作系统!更改用户名与密码首先开始更改用户名,Ubuntu20.04直接进行如下步骤即可:root@ido:~# pkill -9 -u ido #杀死所有ido相关进程,该操作会使ido退出
    Industio_触觉智能 2025-04-02 18:15 32浏览
  • 在智能化设备快速普及的今天,语音交互功能已成为提升用户体验的核心要素之一。WT588F语音芯片,凭借其灵活的存储容量、高兼容性及低功耗设计,成为工业、消费电子、智能家居等领域的优选方案。本文将从技术特性、应用场景及服务支持等维度,解析WT588F如何助力产品智能化升级。一、产品概述:多容量适配,满足多样化需求WT588F语音芯片提供2Mbit、4Mbit、8Mbit三种存储容量版本,支持用户根据实际需求灵活选择。其存储时长与音频格式、码率等参数密切相关,例如:WT588F02B(2Mbit):在
    广州唯创电子 2025-04-03 08:15 46浏览
  •   通用卫星通信模拟仿真系统软件:卫星通信模拟的得力工具   通用卫星通信模拟仿真系统软件,作为专业用于模拟卫星通信环境的利器,能够精准模拟卫星与地面站之间的通信进程,以及全方位考量卫星信号在传播过程中所受的各类影响因素。以下为您详细阐述这类软件的关键要点。   一、核心功能展示   卫星轨道与姿态模拟功能   多样轨道模拟:该软件可逼真模拟卫星于不同轨道上的动态运行状态。   姿态变化模拟:   通信链路模拟功能   链路搭建模拟:   传播因素考量:   信号处理与解调功能
    北京华盛恒辉软件开发 2025-04-02 21:53 50浏览
  •   通信链路模拟训练仿真系统设计方案:多维度考量下的构建蓝图   通信链路模拟训练仿真系统的设计方案,需全面统筹系统目标、功能需求、技术落地以及性能评测等多个关键维度。以下是基于这些综合考量所构建的详细设计方案。   一、系统核心目标   通信链路模拟训练仿真系统旨在打造一个极度贴近真实场景的通信链路模拟环境。其首要目的在于为通信工程师与技术人员提供专业培训平台,助力他们深入理解通信链路的内在工作原理,熟练掌握故障排查技巧以及性能优化方法。   二、功能需求详述   通信链路建模功能
    北京华盛恒辉软件开发 2025-04-03 11:24 73浏览
  • 3月28日~3月30日,飞凌嵌入式技术团队先后走进成都理工大学、厦门大学、厦门理工学院及集美大学,正式启动全国大学生嵌入式芯片与系统设计竞赛西南赛区师资培训与南部赛区的赛题宣讲。旨在通过技术赋能提升竞赛作品质量,深化产教融合影响力。成都理工大学活动现场厦门大学活动现场厦门理工学院活动现场集美大学活动现场活动中飞凌嵌入式的技术专家对“瑞芯微赛道飞凌嵌入式方向选题”进行了深入解读,详细剖析了选题的背景、目标和要求,让参训师生们对竞赛方向有了更清晰的认识;随后对参赛平台(基于RK3588设计的ELF
    飞凌嵌入式 2025-04-02 16:42 27浏览
  • 海信家电发2024年年报,那业绩数据一出来,着实让人眼前一亮。全年营业收入达到927.46 亿元,同比增长8.35%;归母净利润更是高达33.48亿元,同比增长17.99%。这净利润的涨幅,在竞争激烈的家电市场里,相当吸睛。 这对股东来说,可是实打实的利好,也侧面反映出海信家电过去一年的盈利能力杠杠的。从业务板块来看,全品类业务像是开了挂。暖通空调、冰洗厨、汽车热管理等业务全面开花,璀璨套系业务更是增速迅猛,营收同比增长52%,高端家电市场的渗透率一路飙升。 中央空调领域,海
    用户1742991715177 2025-04-02 23:01 40浏览
  • 在智能家居快速发展的今天,智能闹钟凭借其多功能性和交互体验,逐渐成为家庭、办公场景中的核心设备。然而,如何在实现丰富功能的同时控制成本与开发复杂度,成为厂商关注的重点。WT588F02KD语音芯片方案,凭借其高度集成化设计、灵活功能扩展及超低功耗特性,成为智能闹钟领域的优选解决方案。一、方案核心优势:单芯片集成,降本增效WT588F02KD语音芯片以“多、快、省”为核心设计理念,突破传统智能闹钟方案需多颗芯片(如MCU、语音芯片、显示驱动IC等)的复杂架构,通过单芯片实现语音播报、数码管驱动、触
    广州唯创电子 2025-04-03 08:34 42浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦