射频大功率器件TRL校准件的设计与制作

电子万花筒 2021-06-09 07:40
电子万花筒平台核心服务

 中国最活跃的射频微波天线雷达微信技术群

电子猎头:帮助电子工程师实现人生价值! 

电子元器件:价格比您现有供应商最少降低10%

射频微波天线新产品新技术发布平台:让更多优秀的国产射频微波产品得到最好的宣传!发布产品欢迎联系管理,专刊发布!强力曝光!


摘   要:以LDMOS(横向扩散金属氧化物半导体)为代表的射频大功率器件已经在民用通信市场以其优异的性能和低廉的价格应用越来越广泛,对于这种射频大功率器件的器件水平和能力评估也越来越受到应用的关注。本文基于负载牵引系统,采用简单、便捷以及可重复使用的理念,使用常规的微带线阶梯型阻抗变换器电路为基础,充分考虑在应用测试中的偏置电路,进行前期使用ADS(Advanced Design System)仿真加后期验证,设计制造了低耗无串扰的TRL(Though Reflected Delay)校准件,为测试得到射频大功率器件的射频性能奠定了优异的基 础。 


引言

随着通信的日益发展以及半导体功率器件研究和生产技术的突飞猛进,从上世纪90年代末以前主要以硅双极型晶体管和砷化镓场效应管为核心的射频微波功率放大器被增益,线性度以输出功率这些更好的性能的产品所取代(硅基射频LDMOS以及氮化镓场效应管)[1]。这同时也对这些新技术新产品的性能的评估提出了更高的要求。目前国内以苏州纳米所(华太电子技术有限公司)所研制的945_960 MHz频段的RF LDMOS功率管产品(单裸管芯输出功率达到180瓦,线性增益达到19dB,效率达到 70%,电压驻波比达到10:1),已经达到了实业化的目标[2]。较之于传统常用的SOLT校准(适用于同轴校准),TRL校准对于在非同轴环境下进行射频大功率器件的测试来说是一种非常精确的校准方式。这种校准方法的优点在于其校准准确度只依赖于传输线的特征阻抗而不是其他标准,反射标准的反射系数和传输系数的长度都可以在校准中由计算得出[3],很好地避免了一些测试板引入的误差,更能准确地反映被测器件的性能。


1  TRL校准件的要求
基于目前通用的射频测试板材,我们选用的是罗杰斯公司的Rogers 4350B型板材,这种板材制造标称的介电常数εr = 3.48,损耗因子为0.0037,板材厚度选取30mil,走线铜厚选取17μm。此次需要完成的目标频段是:2.0GHz~2.5GHz, 制作出来的Reflect,Though以及Delay校准件均能满足在此频段内反射系数Г(S11)<-10dB,传输系数 T(S22)<-0.9dB。器件根部原始设计阻抗根据经验 我们设定为2.5Ω,测试电路输入输出端口设计阻抗为通信系统设备通用的50Ω,端口采用常用的SMA 型端子作为射频型号输入输出的物理接口。


2  TRL校准件的构建
因为最终目的是为基于Load-Pull系统的器件阻抗提取和性能评估,对于校准件的版图设计基本需考虑通用性和成本,即在射频信号主路采用微带线阶梯型阻抗变换器的基础上,还需要在设计过程中考虑器件应用时所需要的直流偏置电路。


2.1 射频信号主路设计
2.1.1 射频信号主路设计由于从器件根部的2.5Ω变换到测试电路输入输出端口的50Ω,而且需要实现 2.0GHz~2.5GHz的频段跨越,为了确保在宽频带上能获得良好的匹配性能,因此设计阶梯为4级,对应设计的中间变换阻抗为:5Ω、10Ω、20Ω。可以采用 下面的阻抗计算公式计算:

 

其中,W为线宽,T为铜线厚度,εr为板材的介电常数。

在此我们运用安捷伦公司ADS软件中的Linecalc这个小软件进行,微带线宽度的计算和确定如图1所示。

通过软件计算得出微带线宽度与设定阻抗的关系如表1:


图1 ADS微带线计算工具

表1 ADS微带线计算结果

2.1.2 射频信号主路设计的微带线的长度的设计思路为使用不定长度传输微带线多阶梯阻抗变换器(图 2),根据传输线理论:第i节的输入阻抗公式为:

这样就可以使用递推法计算出每一节的微带线的长度。在此由于考虑整个校准件是一个整体,以及还存在去除偏置电路的影响以及整个校准件制作不宜做得太大,因此每一节微带线的长度,我们将使用ADS的S-parameter 调谐仿真,以及Layout之后的Momentum仿真,从整体上对微带线的长度和宽度进行调节,以达到能实现设计目标的要求。 

图2 阶梯阻抗变换器


2.2 直流偏置电路

直流偏置电路为射频功率放大器主路的元器件提供一个工作状态,其设计的好坏将影响放大器的性能,尤其是漏极偏置电路的设计[4]。一般直流偏置电路设计需要遵循的三个原则: 

(1)偏置电路对信号主路影响要尽量的小,即不引入较明显的附加耗损、反射以及高频信号沿偏压电路的泄露。 

(2)为了偏置电路存在的大电流,需要考虑合理的偏置线宽度。 

(3)尽量结构紧凑,简单。
2.2.1 基于直流偏置电路的三个原则,我们在选择四分之一扇形开路线(即四分之一波长开路短截线的变形),这样能够很好满足三原则的要求。扇形微带短截线电抗可以由下列关系式出[5] :

在式(3) 中, Ji(x)和Ni(x)是第一类和第二类贝塞尔函数,α扇形微带短截线的角度,εre是等效介质常数,λ0为自由空间波长, r1和r2是扇形微带线的内、 外半径,h,w分别是介质基片的厚度和微带宽度, we是扇形短截线等效为微带线的宽度。


2.2.2 根据设计的三原则偏置线宽度的设计尤其是器件漏端的偏置线线宽的设计需要我们考虑电流承载能力,同时也需要考虑的是直流偏置铜线必须为尽量细的高阻线,因为这样能减少偏置电路对于主路的影响。那么根据表2中铜箔宽度与承载电流的关系,我们可以进行选择,在此设计中我们考虑电流承受能力在1.2A左右,所以使用0.762的线宽也讲电流承载能力的余量考虑在我们的设计中。 

表2 铜箔宽度与承载电流的关系


3  TRL校准件的仿真与验证   

3.1 校准件的仿真
通过上述对于整个TRL校准件的设计考虑, 使用ADS工具,我们得到了本次根据仿真电路得出的可用于实际制作的PCB版图,以及使用ADS的 Momentum仿真出来的结果。

图3中的S11和S21各有三条线段,分别代Though、Reflect、Delay三块校准件的反射系数和传输系数。考察2.0GHz2.25GHz2.5GHz三个典型频点的值,在S11的曲线图上,除Delay在2.0GHz点上只达到了-11dB,其余均低于-15dB;同样在S21的曲线图 上,除Delay在2.0GHz点上接近与-0.9dB,其余均高于-0.7dB。应该说2.0GHz~2.5GHz这个频段内很好的达到了设计目标。

 

图3 TRL校准件Momentum仿真图


ADS这个软件在仿真、优化过程中有着优异的性能,对于比较高要求和挑战的性能指标能够做好预先仿真,并实现PCB版图电路,减少了工程反复和硬件材料的浪费,降低了设计成本,是一个很好的射频工程应用工具。


3.2 校准件的验证
校准件的验证分两步进行,第一步是对校准件直接进行小信号测试验证,第二步是使用频率在 2.0GHz~2.5GHz之间的器件,在配合Load-Pull系统找到器件封装根部阻抗后,再通过普通射频电路测试板的匹配来验证校准件是否符合设计要求。


3.2.1 校准件小信号参数的验证
在完成TRL校准件的加工之后,我们将TRL校准件中的Though校准件和Delay校准件在Agilent的 N5241A网络分析仪上进行小信号参数的测试,采用其结果与仿真结果进行对比。右图4中上面的图为 “Though校准件”的S11和S21的频率扫描图,图4 为“Delay校准件”的S11和S21的频率扫描图。从结果来看,Though“Though校准件”和“Delay校准件”的S11最大值均低于-12dB,S21的最大值均高-0.84dB。其测量结果与仿真结果基本一致,从测试值来讲还略优于仿真的结果。 


图4 TRL校准件S参数实测

3.2.2 器件的校验
在此我们选取了一颗工作频率在2.45GHz,30W 的RF-LDMOS,在其封装内已经完成了输入的两级匹配的器件来进行验证,通过与Focus的Load-pull的 校准和测量,我们得到的封装器件的根部阻抗为:

输入端:11.669 - 59.755j ; 

输出端:5.941 + 22.597j

使用测量得到的器件根部的阻抗值,我们对符合器件的射频电路测试板进行了匹配,见图5。测试板的小信号测试曲线见图6。对比使用TRL校准件得到的器件性能与射频外围电路测试板得到的器件性能,我们可以看图表3。 

表3的数据显示了使用TRL校准件测的是器件根部阻抗以及在此阻抗下得到的器件性能与根据根部阻抗进行的射频电路测试板匹配后的器件性能比较,其增益、功率和效率基本一致。

图5 24030射频测试电路


图6 TRL校准件小信号测试曲线

表3 TRL校准件得到的24030器件根部阻抗以及性能测试对比

4  结语


上文关于TRL校准件的设计和制作很好地完成了既定的目标,实现了高频下射频大功率器件的TRL校准,同时我们也看到,TRL校准件的设计涉及的很多方面和细节需要很好的梳理和把握。当然,一个好的TRL校准件的设计和制作还需要考虑更多的封装的兼容以及更宽频率的覆盖,这个也是我们将要努力的方向。

(参考文献略)

欢迎射频微波雷达通信工程师关注公众号



中国最纯粹的射频微波雷达通信工程师微信技术群,欢迎您的加入,来这里一起交流和讨论技术吧!进群记得备注方向和公司名称哦,我们将邀请您进细分群!

用手指按住就可以加入微信技术群哦!



电子万花筒平台自营:Xilinx ALTERA ADI TI ST NXP 镁光 三星 海力士内存芯片 等百余品牌的电子元器件,可接受BOM清单,缺料,冷门,停产,以及国外对华禁运器件业务!


欢迎大家有需求随时发型号清单,我们将在第一时间给您呈上最好的报价,微信(QQ同号):1051197468 也希望您把我们的微信推荐给采购同事,感谢对平台的支持与信任!


与我们合作,您的器件采购成本将相比原有供应商降低10%以上!!不信?那您就来试试吧!!欢迎来撩!!




电子万花筒 电子万花筒,每个电子工程师都在关注的综合型技术与行业服务平台!
评论
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 489浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 68浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 507浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 498浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 110浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 83浏览
  • 在不断发展的电子元件领域,继电器——作为切换电路的关键设备,正在经历前所未有的技术变革。固态继电器(SSR)和机械继电器之间的争论由来已久。然而,从未来发展的角度来看,固态继电器正逐渐占据上风。本文将从耐用性、速度和能效三个方面,全面剖析固态继电器为何更具优势,并探讨其在行业中的应用与发展趋势。1. 耐用性:经久耐用的设计机械继电器:机械继电器依靠物理触点完成电路切换。然而,随着时间的推移,这些触点因电弧、氧化和材料老化而逐渐磨损,导致其使用寿命有限。因此,它们更适合低频或对切换耐久性要求不高的
    腾恩科技-彭工 2025-01-10 16:15 102浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 529浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 328浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 463浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 198浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 471浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 448浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦