负反馈的魔力

面包板社区 2021-06-04 17:06

我还记得上大学时,在工程学院图书馆里可以看到专门讲放大器的书。放大器在电子产品中绝对发挥着重要作用,许多微小信号都需要放大,例如由天线、麦克风、热电偶、应变仪,甚至人脑和心脏产生的信号。出于某种原因,人们通常认为放大器的增益越高越好。作为老师,我发现学生们总是热衷于比较他们在实验中得到的放大器增益。有一次,一名学生甚至撒谎,向同学们吹嘘他的放大器增益有多大,但看到实验报告数据后,又不得不接受实际上低得多的增益。


套用Bob Pease的话来说,我不禁想问:高增益这玩意到底是什么?在许多应用中,太高的增益反而派不上用场(想像一下单位增益反相放大器,它只需执行简单的信号反转就行啦)。“放大器”一词似乎不足以描述关于该主题的所有书(对人文学科的学生来说甚至有点书呆子气)。有一次,我在图书馆看一本有关放大器的书,旁边碰巧有一本莎士比亚的十四行诗,可能是有人翻看后没有放回书架。将这两本书进行对比,我越发觉得关于放大器的书是多么乏味。


学了负反馈之后,我才开始意识到高增益的重要性。大约86年前,Harold Black在尝试减少放大器失真时提出了这一里程碑概念。他当时想实现一个接受输入vI并产生输出vO的电路,表示为:



其中Aideal是所期望的电路增益(不一定很大,正好符合应用需要就行)。在现实世界中,理想值是无法实现的,但我们可以尽可能接近理想值。为了量化,我们需要定义一个误差信号,即:



然后我们必须设计一种方法来调整vO,以便让vE尽可能接近零。从图1的设计可以看出,Harold Black的想法是通过一个高增益放大器来放大vE,由此产生vO。这称为误差放大器,可以得到:

 

其中aε是预期的放大器高增益。


什么?如果vE是误差,那么vO本身不也是一个误差,而且是一个异常放大的误差吗?你有没有听说过通过赞美误差会得到好的结果?显然,这不是看待问题的最好方式。较好的方法是将注意力从vO转移到vE,将公式改写为:


    

图1:基本的负反馈方框图。


并意识到高aε值的放大器只需要相当小的vE来维持vO(如果将放大器比作双筒望远镜,就像反过来看双筒望远镜一样)。将公式(2)重写为:



这表明如果vE足够小,vO将非常接近AidealvI。同样重要的是,如果出现任何因素试图增加/减少vE,放大器将通过减小/增加vO作出相反的反应。正是这个小小的“减号”阻止了vO无限制地增大(这是负反馈的秘密!)


图2:(a)不包含和(b)包含放大器的电路,显示在加入放大器后,在aε→∞(即vE→0)时出现新的电压和电流。


图2a的电路中示出了电压和电流。接下来连接一个高增益放大器,如图2b所示,可以看到它是如何改变电压和电流来使vE变小。实际上,在aε→∞时,放大器将迫使vE为零,从而在节点C和A之间建立虚短。这将导致2V信号源和2kΩ电阻产生(2V)/(2kΩ)=1mA的电流。该电流从1kΩ电阻获取,使得vA=-(1kΩ)x(1mA)=-1V。按照KVL,vB=vA+2V=+1V,并且vC=vB–(2kΩ)x(1mA)=-1V=vA。因此确定vE=vA–vC→0。电流通过3kΩ电阻进入放大器输出节点,最后到负电源(未显示)。因此,vO=vC–(3kΩ)x(1mA)=-4V。


放大器如何“知道”将vO精确调整到-4V?假如让vO提升1V,从-4V到-3V,使用简单的分压器推理,就发现vC会上升0.5V,vA会上升1/6V,这会导致vE=vA-vC从0V变为-1/3V。这反过来将导致放大器向负方向摆动vO,从而抑制初始电压升高。再比如,将vO变为-5V,这将使vE从0V变为+1/3V,进而使放大器向相反的正方向摆动vO。显然,任何让vO偏离-4V的尝试最终都会遇到一种反作用,它会使vO恢复到-4V,这是放大器处于“平静”状态的唯一值。这就是负反馈。若我们尝试交换放大器的输入端子以使反馈为正,将看到任何让vO摆动离开-4V(假设vO到了那里)的尝试会导致vO偏离,直到放大器最终达到饱和。


如果aε不是无限的,比方说aε=1000V/V,会怎样呢?vE仍将很小,使回路电流及各种电压变化非常小。假设vO仍然在-4V附近,从公式(4)可以预测到vE≈-4/1000=-4mV,因此回路电流从1.0mA减小到(2-0.004)/2=0.998mA。使用这个新的电流值重复上述计算步骤,会发现vO从-4V变为-3.988V,这个变化可以忽略不计!


 总而言之,负反馈使用高增益放大器不会使vO无限制地变大,而是使vE变小,或者使vE趋于零(理想情况下)。


一个指导性示例


我们将上述情形放到一个更实际的框架中,重构一种失真情况,也许能激发Harold Black这样的天才的想象力。在图3a中,我们试图通过单位增益(Aideal=1V/V)推挽式缓冲器来驱动100Ω负载。只要vI>VBE1或vI<VEB2,推挽电路就可以接近单位增益,但在VEB2<vI<VBE1时则为零增益,这将导致图3b中顶部曲线的输出高度失真。图3b底部显示的是误差vE=vI-vO。


图3:(a)推挽式缓冲器 (b)输入/输出波形(顶部)和误差波形(底部)。


你是否会考虑通过放大误差vE来降低vO的失真?Harold Black就是这样做的,其结果如图4和图5所示。图4的电路中使用了一个aε=100V/V的前置放大器,以及一根普通电线来反馈vO,并确定输入端误差vE=vI-vO。从图5顶部可以看出其好处,它表明vO现在更接近vI了。如果我们再将aε增加10倍,达到1000V/V,vO的变化会很小,因为它已经非常接近vI了。额外增加10倍的增益只是将vE进一步降低10倍(记住反过来看双筒望远镜这个比喻)。

 

图4:将aε提高到100V/V,并用一根线实现Aideal=1V/V的负反馈。


失真跑哪儿去了?从图5中间图形的放大器输出vA,可以看出使vO紧密跟随vI放大器所需的扭曲类型。放大器从哪里得到这些扭曲指令?来自图5底部曲线的误差信号,此时vE=vA/100,为数十毫伏。放大器如何设法预失真自己的输入?“这完全是魔力,负反馈的魔力”,我的一个学生在课堂上如此说。我们为这种魔力付出了多大代价?我们实际上浪费了40dB的误差增益,以达到仅1V/V或0dB的总体增益。考虑到这些好处,这个代价非常值得。

 

图5:图4的负反馈电路波形。


负反馈充满了令人着迷的细节,一些学生因为急于应付作业和考试而无法充分体会。许多人毕业后将在工作中掌握它们,也有人可能没有机会再深入体验。为了纪念天才Harold Black,我打算专门为工程师撰写一系列教程。我的“analog bytes”系列文章将逐渐增加复杂度,从最基本的内容一直到令人生畏的专题内容,比如在有右半平面零点时的频率补偿。


小测验


图6的电路有点类似于图2的电路,只是一旦你连接放大器就会得到vE=0,无论它的增益是大、中、小,甚至是零。你能解释这是为什么吗?不需要数学计算,也不能使用SPICE,只要使用简单直观的推理就行啦。



图6:加入放大器前(a)后(b)的电路。



—END—

热门推荐:




调制的理解

DC-DC开关电源电路计算


PCB设计指南:安规、布局布线、EMC、热设计、工艺


频谱基础


C语言指针最详尽的讲解


一文看懂差分线



 内容合作 视频、课程合作 | 开发板合作转载开白 

 请联系小助手微信:15889572951(微信同号)


点击阅读原文,下载《数字图像处理》

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 203浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 122浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 74浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 178浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 134浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 658浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 609浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 194浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 238浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 159浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 210浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 321浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 145浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦