AK47所向披靡,内存泄漏一网打尽

Linux阅码场 2021-06-03 09:51
作者 / 尝君、品文
编辑 /  芹菜
出品 / 云巅论剑

青囊,喜欢运动T恤加皮裤的非典型程序猿。此时,他正目不转睛注视着屏幕上一行行的代码,内存泄漏这个问题已经让他茶饭不思两三天了,任凭偌大的雨滴捶打着窗户也无动于衷。就这么静悄悄地过了一会儿,突然间,他哼着熟悉的小曲,仿佛一切来的又那么轻松又惬意。

是谁,在撩动我琴弦,那一段被遗忘的时光......
初识内存泄漏

小白的练级之路少不了前辈们的语重心长。从踏上linux内核之路开始,专家们就对青囊说——“遇到困难要学会独立思考”、“最好的学习方式就是带着问题看代码”等等。可这次遇到的问题,让青囊百思不得其解——机器总内存有200G,运行800多天,slabUnreclaim占用 2G,且停掉业务进程,内存占用并没有降低客户非得让青囊给出合理解释:

1.slab 2G内存是否存在泄漏?如果存在泄漏需要找到原因。

2.如不存在泄漏,需要找到这2G的使用者。

客户的问题很毒辣,是或不是都得给出合理解释,需要用数据说话。带着这些疑问,青囊开始了漫长的排查之路。
正在青囊全身心投入工作的时候,专家走到他的身旁,静悄悄的脚步并没有被专心致志的青囊发现。专家的眼光放在了那一串串的代码之上,眼里流露出老父亲般的慈祥。专家张口一句:“内存泄漏,这类问题不难,内核自带kmemleak可以排查。况且200G的内存,slab Unreclaim才占用2G,这根本就没问题嘛。”青囊一下子抓到了救命稻草,眼里泛着希望的光芒。
一来这可能不是一个问题,二来也有排查工具kmemleak了。说干就干,青囊对kmemleak原理和使用进行了深入学习,kmemleak的使用总结起来就两条指令:

 echo scan > /sys/kernel/debug/kmemleak

cat /sys/kernel/debug/kmemleak

青囊迫不及待地登陆服务器执行命令——

#echo scan > /sys/kernel/debug/kmemleak

 bash: /sys/kernel/debug/kmemleak: Permission denied

咦,居然提示没权限?

#ls -l /sys/kernel/debug/kmemleak

ls: cannot access /sys/kernel/debug/kmemleak: No such file or directory

查看系统配置,原来线上环境根本就没有打开kmemleak。

# CONFIG_DEBUG_KMEMLEAK is not set

青囊立马想到,可以重新编译内核使能kmemleak,再让客户来复现问题,但客户狠狠地甩了一句,“你们的目标不是提供永不停机的计算服务吗!?
此时此刻,青囊燃起的希望又破灭了。
青囊自我安慰了一番,接着跑到专家边上想请教。他一脸沮丧地说着问题背景,专家听罢,无可奈何地挥了挥手:“你玩斗地主都是直接上来就王炸的吗?这种问题应该是自己思考解决的”。青囊只好灰头土脸地回工位。痛定思痛,他憋着口气,一定要搞懂内存管理,搞懂slab内存分配。
于是,青囊又开始了自己的钻研之路。

内存泄漏升华之路

经过系统学习,青囊对内存管理有了大致的了解。按照Linux 内存分配API的不同,可以把内存简单分为四种类型——
  1. alloc page 内存, 直接调用__get_free_page/alloc_pages等函数从伙伴系统申请单个或多个连续的页面。
  2.  slab 内存,使用kmalloc/kmem_cache_alloc 等slab接口申请内存。slab 分配器基于伙伴系统,提供了小内存的分配能力(虽然也兼容大内存分配)。slab分配器从伙伴系统"批发"大内存,然后把大内存分成许多小块内存,一个小块内存块称为object, 最后把object "零售"给其他内核组件使用。
  3. vmalloc内存,vmalloc内存也是基于伙伴系统,实现了线性映射非连续内存的能力,能够分配更多,更大的内存。
  4. 用户态内存,主要指anon page 和file cache,最终由内核一个个单一的页面映射而成。
青囊不知道自己这样的理解到底属于什么程度,于是想借着客户的问题,顺便也动手练习一下。虽然内存的使用进程成千上万,但作为物理存储介质,不管内存被哪个进程使用,物理上都是不可移动的。泄漏的内存是“躺尸”一样的存在,而且特征还非常明显。因为泄漏的slab内存,就好比聚会后的场地,总会留下点什么。
其特点有——
  1. 内存的内容不会再改变, 因为没有进程能访问到这块内存。

  2. slab的object内存对象,可能会残留使用过的全局变量, 函数名,字符串,指针,特定数值(垃圾满地)。

  3. 内存中充斥着大量内容相似(相等)的slab object对象。

基于以上三个特征,青囊这里也借助“大数据”思维来进行排查,可以使用crash工具在内存中寻找出现最多的object,并且在object中找到可视的函数名,全局变量,再结合代码,就可以推测泄漏的函数了。

sysAK——内存泄漏无处遁逃

有了slab分配器系统的学习,以及对内存泄漏特征的思考,等到再一次登陆机器时,青囊信心满满志在必得。想想毕竟有备而来,这次一定让内存泄漏无处可逃。
排查过程大致可以分为四步:
1. 确认泄漏的slab
通过slabtop  -s -a ,找到使用objects最多且不可回收的slab
OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME 419440512 419440512 100% 0.03K 3276879 128 13107516K kmalloc-32 810303 401712 49% 0.10K 20777 39 83108K buffer_head 417600 362397 86% 1.05K 13920 30 445440K ext4_inode_cache 267596 241915 90% 0.57K 9557 28 152912K radix_tree_node 216699 154325 71% 0.19K 10319 21 41276K dentry 155958 37367 23% 0.04K 1529 102 6116K ext4_extent_status
可以看到kmalloc-32的active object达到了4亿多个,占用内存在1.3G左右,泄漏嫌疑最大,那就拿kmalloc-32来开刀了。
2. 启用crash实时分析kmalloc-32的内存
3.查找kmalloc-32内存页
crash> kmem -S kmalloc-32 | tailffffea000c784e00 ffff88031e138000 0 128 111 17ffffea00242d0240 ffff88090b409000 0 128 126 2ffffea00436c5800 ffff8810db160000 0 128 127 1ffffea0018b1df40 ffff88062c77d000 0 128 126 2ffffea005947d1c0 ffff881651f47000 0 128 126 2ffffea004d463080 ffff8813518c2000 0 128 126 2ffffea0030644100 ffff880c19104000 0 128 126 2
4.dump内存内容
这里可以随机选择多个page来分析,这里选择ffff88031e138000来分析。
crash> rd ffff88031e138000 -Sffff88031e138000: ffff882f59bade00 dead000000100100 ...Y/...........ffff88031e138010: dead000000200200 ffffffff002856f7 .. ......V(.....-------ffff88031e138020: ffff882f59bade00 dead000000100100 ...Y/...........ffff88031e138030: dead000000200200 ffffffff00284a2a .. .....*J(.....------ffff88031e138040: ffff882f59bade00 dead000000100100 ...Y/...........ffff88031e138050: dead000000200200 00303038002856f7 .. ......V(.800.------ffff88031e138060: ffff882f59bade00 dead000000100100 ...Y/...........ffff88031e138070: dead000000200200 ffffffff00284a29 .. .....)J(.....
可以看到每个object的内容大体相似,但并没有预期的顺利,没有看到函数名或者变量名,可青囊知道 ffff882f59bade00 这也是个slab内存地址,于是进一步打印其内容
crash> x /20a 0xffff882f59bade000xffff882f59bade00: 0x460656b7 0xffffffff81685b60 0xffff882f59bade10: 0x63ea63ea00000001 0xffff882f59bade180xffff882f59bade20: 0xffff882f59bade18 0x00xffff882f59bade30: 0x0 0xffff882f59bade380xffff882f59bade40: 0xffff882f59bade38 0x7fb27fb2
0xffffffff81685b60明显是内核只读段的地址。sym 这个地址,原来是inotify_fsnotify_ops全局变量,从而推出泄漏结构体是struct fsnotify_event_private_data,然后结合fsnotify_event_private_data分配和释放的代码,在释放内存时存在不正确的判断逻辑,导致分配的内存没有添加到链表,失去释放的机会,从而导致泄漏。
分析到这里,青囊终于确认这是一起内存泄漏,而且泄漏的函数也定位到了,这下算是可以给客户一个满意的答案了。
客户问题得到了解决,青囊也对内存管理有了深刻的认识,还形成了自己的一套分析方法。但是青囊心里也清楚,泄漏的内存不是每次都能找到函数名或者可视字符,手工使用crash查看的内存样本也不一定够,还要对内存地址比较敏感。于是青囊想把这套分析方法提炼成工具,可以对内存泄漏这类问题实施快速一键诊断,且不要懂内存知识,人人都可以上手分析
抱着这样的理念,实现了5个核心功能:
  1. 自动判断系统是否存在泄漏。

  2. 自动判断是slab, vmalloc还是alloc page泄漏。

  3.  扫描全局内存,找到内存中slab object最多,且内容相似度最高的object。

  4.  动态采集内存的分配和释放。

  5. 计算动态采集地址的内容与存量object的内容相似度,但达到一定相似度时,则对动态地址进行标记。

青囊把工具命名为sysAK,寓意像AK47一样,能够对系统问题快速定位。随着青囊的学习成长,sysAK后续也会加入更多的功能,实现对操作系统全方位的监控,诊断和修复。
手握sysAK,青囊也蠢蠢欲动想验证自己的工具,于是找专家们要来正在处理的“内存泄漏问题”。专家们只见青囊轻轻地敲击了一条指令sysak memleak
静静等待了200秒后,屏幕输出了令人为之一振的结果:
未释放内存汇总:次数 标记次数 函数66 62 bond_vminfo_add+0x7c/0x200 [bonding]109 0 memleak_max_object+0x3f7/0x7e0 [mem]33 0 inet_bind_bucket_create+0x21/0x701 0 copy_fs_struct+0x22/0xb01 0 tracepoint_add_probe+0xf8/0x430
slab: kmalloc-64 object地址: 0xffff88003605e000 相似object数量: 593975泄漏函数: bond_vminfo_add+0x7c/0x200 [bonding]
结果直接显示bond_vminfo_add函数存在泄漏,因为它分配的地址与内存中的59万个object高度相似。专家们看到这个结果,半信半疑地回去review代码——bond_vminfo_add函数竟然真存在泄漏。大家对青囊投来了诧异的眼神,满是赞许。
此刻的畅快,像极了游戏通关之后的感觉。通过自己的努力,最终顺利解决了问题,这个过程,只是说起来都觉得充满了成就感。这次经历,也鼓舞着青囊继续前行。
一个程序猿的自我修养——别轻易放过bug
(完)

往期精彩回顾
1、梦里花落知多少,网络抖动逃不了
2、谁来拯救存量SGX1平台?又一个内核特性合并的血泪史
3、浅谈国密算法在Linux内核文件完整性保护上的实践
4、师兄,2021春招来了,阿里云基础软件怎么样?


说明:本文为「云巅论剑」原创文章,转载请遵守转载要求,不允许修改内容,请务必保留作者和出处。
Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论 (2)
游客_754322021-06-03 10:12
那么问题来了,ak开源吗?
游客_137962021-06-03 10:08
[可怜]工具可以分享下么
  •       知识产权保护对工程师的双向影响      正向的激励,保护了工程师的创新成果与权益,给企业带来了知识产权方面的收益,企业的创新和发明大都是工程师的劳动成果,他们的职务发明应当受到奖励和保护,是企业发展的重要源泉。专利同时也成了工程师职称评定的指标之一,专利体现了工程师的创新能力,在求职、竞聘技术岗位或参与重大项目时,专利证书能显著增强个人竞争力。专利将工程师的创意转化为受法律保护的“无形资产”,避免技术成果被他人抄袭或无偿使
    广州铁金刚 2025-03-25 11:48 124浏览
  • 核心板简介创龙科技 SOM-TL3562 是一款基于瑞芯微 RK3562J/RK3562 处理器设计的四核 ARM C ortex-A53 + 单核 ARM Cortex-M0 全国产工业核心板,主频高达 2.0GHz。核心板 CPU、R OM、RAM、电源、晶振等所有元器件均采用国产工业级方案,国产化率 100%。核心板通过 LCC 邮票孔 + LGA 封装连接方式引出 MAC、GMAC、PCIe 2.1、USB3.0、 CAN、UART、SPI、MIPI CSI、MIPI
    Tronlong 2025-03-24 09:59 181浏览
  • 今年全国两会期间,“体重管理”和“育儿”整体配套政策引发了持久广泛关注。从“吃”到“养”,都围绕着国人最为关心的话题:健康。大家常说“病从口入”,在吃这件事上,过去大家可能更多是为了填饱肚子,如今,消费者从挑选食材到厨电都贯彻着健康的宗旨,吃得少了更要吃得好了。这也意味着在新消费趋势下,谁能抓住众人的心头好,就能带起众人的购买欲望,才能在新一轮竞争中脱颖而出。作为家电行业的风向标,在2025年中国家电及消费电子博览会(AWE)上,这两个话题也被媒体和公众频繁提及。深耕中国厨房三十余年的苏泊尔再次
    华尔街科技眼 2025-03-22 11:42 82浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 74浏览
  • 无论你是刚步入职场的新人,还是已经有几年经验的职场老手,培养领导力都是职业发展中一个至关重要的环节。拥有良好的领导能力不仅能让你从人群中脱颖而出,也能让你在团队中成为一个值得信赖、富有影响力的核心成员。什么是领导力?领导力并不仅仅意味着“当老板”或者“发号施令”。它更多地是一种能够影响他人、激发团队潜能,并带领大家实现目标的能力。一位优秀的领导者需要具备清晰的沟通能力、解决问题的能力,以及对人心的深刻理解。他们知道如何激励人心,如何在压力下保持冷静,并能在关键时刻做出正确的决策。如何培养领导力?
    优思学院 2025-03-23 12:24 91浏览
  • 文/Leon编辑/cc孙聪颖‍去年,百度公关部副总裁璩静的争议言论闹得沸沸扬扬,最终以道歉离职收场。时隔一年,百度的高管又出事了。近日,“百度副总裁谢广军女儿开盒孕妇”事件登上热搜,持续发酵,引起网友对百度数据安全性的怀疑。3月19日晚间,百度正式发布声明,表示坚决谴责窃取和公开他人隐私的网络暴力行为,同时强调,百度内部实施匿名化、假名化处理,经查验,泄露数据并非来自百度,而是海外的社工库,“当事人承认家长给她数据库”为不实信息,针对相关谣言百度已经向公安机关报案。然而,并非所有网友都对这份声明
    华尔街科技眼 2025-03-21 21:21 106浏览
  • 在智慧城市领域中,当一个智慧路灯项目因信号盲区而被迫增设数百个网关时,当一个传感器网络因入网设备数量爆增而导致系统通信失效时,当一个智慧交通系统因基站故障而导致交通瘫痪时,星型网络拓扑与蜂窝网络拓扑在构建广覆盖与高节点数物联网网络时的局限性便愈发凸显,行业内亟需一种更高效、可靠与稳定的组网技术以满足构建智慧城市海量IoT网络节点的需求。星型网络的无线信号覆盖范围高度依赖网关的部署密度,同时单一网关的承载设备数量有限,难以支撑海量IoT网络节点的城市物联系统;而蜂窝网络的无线信号覆盖范围同样高度依
    华普微HOPERF 2025-03-24 17:00 174浏览
  •        当今社会已经步入了知识经济的时代,信息大爆炸,新鲜事物层出不穷,科技发展更是一日千里。知识经济时代以知识为核心生产要素,通过创新驱动和人力资本的高效运转推动社会经济发展。知识产权(IP)应运而生,成为了知识经济时代竞争的核心要素,知识产权(Intellectual Property,IP)是指法律赋予人们对‌智力创造成果和商业标识等无形财产‌所享有的专有权利。其核心目的是通过保护创新和创意,激励技术进步、文化繁荣和公平竞争,同时平衡公共利益与
    广州铁金刚 2025-03-24 10:46 65浏览
  • 文/Leon编辑/cc孙聪颖‍“无AI,不家电”的浪潮,正在席卷整个家电行业。中国家电及消费电子博览会(AWE2025)期间,几乎所有的企业,都展出了搭载最新AI大模型的产品,从电视、洗衣机、冰箱等黑白电,到扫地机器人、双足机器人,AI渗透率之高令人惊喜。此番景象,不仅让人思考:AI对于家电的真正意义是什么,具体体现在哪些方面?作为全球家电巨头,海信给出了颇有大智慧的答案:AI化繁为简,将复杂留给技术、把简单还给生活,是海信对于AI 家电的终极答案。在AWE上,海信发布了一系列世俱杯新品,发力家
    华尔街科技眼 2025-03-23 20:46 72浏览
  • 在智能终端设备开发中,语音芯片与功放电路的配合直接影响音质表现。广州唯创电子的WTN6、WT588F等系列芯片虽功能强大,但若硬件设计不当,可能导致输出声音模糊、杂音明显。本文将以WTN6与WT588F系列为例,解析音质劣化的常见原因及解决方法,帮助开发者实现清晰纯净的语音输出。一、声音不清晰的典型表现与核心原因当语音芯片输出的音频信号存在以下问题时,需针对性排查:背景杂音:持续的“沙沙”声或高频啸叫,通常由信号干扰或滤波不足导致。语音失真:声音断断续续或含混不清,可能与信号幅度不匹配或功放参数
    广州唯创电子 2025-03-25 09:32 60浏览
  • 在智能终端设备快速普及的当下,语音交互已成为提升用户体验的关键功能。广州唯创电子推出的WT3000T8语音合成芯片,凭借其卓越的语音处理能力、灵活的控制模式及超低功耗设计,成为工业控制、商业终端、公共服务等领域的理想选择。本文将从技术特性、场景适配及成本优势三方面,解析其如何助力行业智能化转型。一、核心技术优势:精准、稳定、易集成1. 高品质语音输出,适配复杂环境音频性能:支持8kbps~320kbps宽范围比特率,兼容MP3/WAV格式,音质清晰自然,无机械感。大容量存储:内置Flash最大支
    广州唯创电子 2025-03-24 09:08 185浏览
  • 人形机器人产业节奏预估:2024年原型机元年,2025年小规模量产元年。当宇树科技H1人形机器人以灵动的手部动作在春晚舞台上演创意融合舞蹈《秧Bot》,舞出"中国智造"时,电视机前十几亿观众第一次深刻意识到:那个需要仰望波士顿动力的时代正在落幕。*图源:宇树科技短短数周后,宇树G1机器人又用一段丝滑的街舞在网络收割亿级播放量,钢铁之躯跳出赛博朋克的浪漫。2月11日,宇树科技在其京东官方旗舰店上架了两款人形机器人产品,型号分别为Unitree H1和G1。2月12日,9.9万元的G1人形机器人首批
    艾迈斯欧司朗 2025-03-22 21:05 134浏览
  • 在人工智能与物联网技术蓬勃发展的今天,语音交互已成为智能设备的重要功能。广州唯创电子推出的WT3000T8语音合成芯片凭借其高性能、低功耗和灵活的控制方式,广泛应用于智能家居、工业设备、公共服务终端等领域。本文将从功能特点、调用方法及实际应用场景入手,深入解析这款芯片的核心技术。一、WT3000T8芯片的核心功能WT3000T8是一款基于UART通信的语音合成芯片,支持中文、英文及多语种混合文本的实时合成。其核心优势包括:高兼容性:支持GB2312/GBK/BIG5/UNICODE编码,适应不同
    广州唯创电子 2025-03-24 08:42 154浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 72浏览
我要评论
2
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦