关于MLCC陶瓷电容,这篇总结得太全面了!

云脑智库 2021-06-01 00:00


1前言

电子元器件之一电容种类繁多,而陶瓷电容是用得最多种类,没有之一,因此硬件工程师必须熟练的掌握其特性。


作为一个工作多年的硬件工程师,笔者结合自身经验,通过查阅各种资料,针对硬件设计需要掌握的重点及难点,总结了此文档。通过写文档,目的是能够使自己的知识更具有系统性,温故而知新,同时也希望对读者有所帮助,大家一起学习和进步。


2、电容的定义


2.1 电容的本质


两个相互靠近的导体,中间夹一层不导电的绝缘介质,这就构成了电容器。当电容器的两个极板之间加上电压时,电容器就会储存电荷。 

                          


2.2 电容量的大小


电容器的电容量在数值上等于一个导电极板上的电荷量与两个极板之间的电压之比。电容器的电容量的基本单位是法拉(F)。在电路图中通常用字母C表示电容元件。

电容量的大小公式:


Er:两极板间介质的介电常数

S:两极板间的正对面积

k:静电常数,等于k=8.987551×10^9N·m^2/C^2

d:两极板间的距离

化简后的公式是:

想使电容容量大,有三种方法:

①使用介电常数高的介质

②增大极板间的面积

③减小极板间的距离


3、MLCC陶瓷电容物理结构



MLCC(Multi-layer Ceramic Capacitors)是片式多层陶瓷电容器英文缩写。是由印好电极(内电极)的陶瓷介质膜片以错位的方式叠合起来,经过一次性高温烧结形成陶瓷芯片,再在芯片的两端封上金属层(外电极),从而形成一个类似独石的结构体,故也叫独石电容器。



可以看到,内部电极通过一层层叠起来,来增大电容两极板的面积,从而增大电容量。


陶瓷介质即为内部填充介质,不同的介质做成的电容器的特性不同,有容量大的,有温度特性好的,有频率特性好的等等,这也是为什么陶瓷电容有这么多种类的原因。


4、陶瓷电容的基本参数


4.1 电容的单位


电容的基本单位是:F(法),此外还有μF(微法)、nF、pF(皮法),由于电容F的容量非常大,所以我们看到的一般都是μF、nF、pF的单位,而不是F的单位。

它们之间的具体换算如下:  

1F=1000000μF 

1μF=1000nF=1000 000pF 


4.2 电容容量


常用陶瓷电容容量范围:0.5pF~100uF。


实际生产的电容的陶瓷容量值也是离散的,常用电容容量如下表:



陶瓷电容容量从0.5pF起步,可以做到100uF,并且根据电容封装(尺寸)的不同,容量也会不同。


选购电容器不能一味的选择大容量,选择合适的才是正确的,例如0402电容可以做到10uF/10V,0805的电容可以做到47uF/10V,但是为了好采购、成本低,一般都不会顶格选电容。


一般推荐0402选4.7uF-6.3V,0603选22uF/6.3,0805选47uF/6.3V,其它更高耐压需要对应降低容量。


满足要求的情况下,选择主要就看是否常用,价格是否低廉。


4.3 额定电压


陶瓷电容常见的额定电压有:2.5V、4V、6.3V、10V、16V、25V、50V、63V、100V、200V、250V、450V、500V、630V、1KV、1.5KV、2KV、2.5KV、3KV等等。

  

4.4 电容类型


同介质种类由于它的主要极化类型不一样,其对电场变化的响应速度和极化率亦不一样。在相同的体积下的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。介质材料划按容量的温度稳定性可以分为两类,即Ⅰ类陶瓷电容器和Ⅱ类陶瓷电容器, NPO属于Ⅰ类陶瓷,而其他的X7R、X5R、Y5V、Z5U等都属于Ⅱ类陶瓷。


MLCC陶瓷电容主要分为2大类:高节介电常数型和温度补偿型



国内:风华FH、宇阳科技EYANG、信昌电陶PSA、三环CCTC等等。村田muRata、松下PANASONIC、三星SAMSUNG、太诱TAIYO YUDEN、TDK、威世VISHAY、国巨YAGEO等等。4.5


5、陶瓷电容的特点


5.1 电容实际电路模型


电容作为基本元器件之一,实际生产的电容都不是理想的,会有寄生电感,等效串联电阻存在,同时因为电容两极板间的介质不是绝对绝缘的,因此存在数值较大的绝缘电阻。


所以,实际的电容模型等下如下图:

5.2 阻抗-频率特性


根据上述电容模型,我们可以得到电容的复阻抗公式:



实际陶瓷电容的绝缘电阻时非常大的,是兆欧姆级别的,所以R远大于,所以简化公式为:



其中为容抗,为感抗,为等效串联电阻。很容易看出,在频率比较低(比较小)的时候,容抗远大于感抗,电容主要成容性,在频率比较高的时候,电容主要呈感性。


而当,即谐振的时候,阻抗等于等效串联电阻,此时阻抗达到最小值,如果是用来滤波的话,此时效果最好。


某村田10uF电容的阻抗频率曲线如下图:



注意,这个坐标系是对数坐标系,纵轴为复阻抗的模。


5.3 谐振频率


从上小节可知,电容在谐振频率处阻抗最低,滤波效果最好,那么各种规格的电容的谐振频率是多少呢?


下图是村田常用电容的谐振频率表:


频率曲线如下图:



5.4 等效串联电阻ESR


从上小节可以看出,陶瓷的等效串联电阻并不是恒定的,它是跟频率有很大的关系。上述10uF电容在100hz的时候,ESR是3Ω,在700Khz的时候达到最小,ESR是3mΩ,相差了1000倍,是非常大的。


我们非常关心陶瓷电容的ESR到底是多大,特别用在开关电源的时候,需要用来计算纹波的大小。那么各中电容型号的ESR是多少呢?


下图为村田普通电容的ESR表。



ES频率曲线如下图:


5.5 精度大小


相对于电阻的精度来说,电容的精度要低很多,以下是一般电容的精度。

同一类型的电容精度一般厂家会生产2~4种精度的档次共选择。


电容类型

精度档次

NP0(C0G)(0.5pF~4.9pF)

B(±0.1pF);

C(±0.25pF)

NP0(C0G)(5.0pF~9.9pF)

D(±0.5pF)

NP0(C0G)(≥10pF)

F(±1%),  G(±2%), J(±5%),K(±10%)

X7R

J(±5.0%);K(±10%);M(±20%);

X5R

J(±5.0%);K(±10%);M(±20%);

Y5V

M(±20%);Z(-20%,+80%)

5.6温度特性


不同类型的电容的工作温度范围是不同的、并且其容量随温度的变化也不同,相差非常大,如下表


温度特性对照表

电容型号

工作温度范围

容量随温度变化值

C0G(NP0)

-55~125℃

0±30ppm/℃

X7R

-55~125℃

±15%

X6S

-55~105℃

±22%

X5R

-55~85℃

±15%

Y5U

-30~85℃

+22%/-56%

Y5V

-30~85℃

+22%/-82%

Z5U

10~85℃

+22%/-56%

Z5V

10~85℃

+22%/-82%


在设计电路的时候,需要考虑不同电容的温度系数,按照使用场景选择符合要求的电容。在一些对电容容量由要求的地方,就不能选择Y或者Z系列的电容。


5.7直流偏压特性


陶瓷电容的另外一个特性是其直流偏压特性。


对于在陶瓷电容器中又被分类为高诱电率系列的电容器(X5R、X7R特性),由于施加直流电压,其静电容量有时会不同于标称值,因此应特别注意。


例如,如下图所示,对高介电常数电容器施加的直流电压越大,其实际静电容量越低。


容值越高的电容,直流偏压特性越明显,如47uF-6.3V-X5R的电容,在6.3V电压处,电容量只有其标称值的15%左右,而100nF-6.3V-X5R的电容容值为其标称值的,如下图。


那么,DC偏压特性的原理是怎样的呢?


陶瓷电容器中的高诱电率系列电容器,现在主要使用以BaTiO3 (钛酸钡) 作为主要成分的电介质。


BaTiO3具有如下图所示的钙钛矿(perovskite)形的晶体结构,在居里温度以上时,为立方晶体(cubic),Ba2+离子位于顶点,O2-离子位于表面中心,Ti4+离

子位于立方体中心的位置。



上图是在居里温度(约125℃)以上时的立方晶体(cubic)的晶体结构,在此温度以下的常温领域,向一个轴(C轴)延长,其他轴略微缩短的正方体(tetragonal)晶体结构。


此时,作为Ti4+离子在结晶单位的延长方向上发生了偏移的结果,产生极化,不过,这个极化即使在没有外部电场或电压的情况下也会产生,因此,称为自发极化(spontaneous polarization)。像这样,具有自发极化,而且可以根据外部电场转变自发极化的朝向的特性,被称为强诱电型(ferro electricity)。



与单位体积内的自发极化的相转变相同的是电容率,可视为静电容量进行观测。


当没有外加直流电压时,自发极化为随机取向状态,但当从外部施加直流电压时,由于电介质中的自发极化受到电场方向的束缚,因此不易发生自发极化时的自由相转变。其结果导致,得到的静电容量较施加偏压前低。


这就是当施加了直流电压后,静电容量降低的原理。


此外,对于温度补偿用电容器 (CH、C0G特性等) ,以常诱电性陶瓷作为主要原料,静电容量不因直流电压特性而发生变化。


5.8 漏电流和绝缘电阻


陶瓷电容绝缘电阻比较大,漏电流小。


绝缘电阻主要与容量有关,容量越大,漏电流越大,下面列出村田的几种普通电容的绝缘电阻表格,可供参考。


电容型号

绝缘电阻

额定电压下漏电流

10pF_CH_0603_50V

≥10000MΩ

≤0.005uA

100pF_C0G_0603_50V

≥10000MΩ

≤0.005uA

1nF_X7R_0603_50V

≥10000MΩ

≤0.005uA

10nF_X7R_0603_50V

≥10000MΩ

≤0.005uA

100nF_X7R_0603_50V

≥500MΩ

≤0.1uA

1uF_X7R_0603_25V

≥50MΩ

≤0.5uA

10uF_X5R_0603_10V

≥5MΩ

≤2uA

47uF_X5R_0805_6.3V

≥1.06MΩ

≤5.94uA

6、常见问题

6.1 机械应力导致电容失效


陶瓷电容最坑的失效就是短路了,一旦陶瓷电容短路,产品无法正常使用,危害非常大,那么造成短路失效的原因是什么呢?


答案是机械应力、机械应力会产生裂纹,从而是电容容量变小或者是短路。



为什么会产生扭曲裂纹呢?这是由于贴片是焊接在电路板上的。对电路板施加过大的机械力、使得电路板弯曲或老化,从而产生了扭曲裂纹。



扭曲裂纹从下面的外部电极的一端延伸到上面的外部电极的话,容量就会下降,使得电路呈现出开路状态(开放)。因此,即使裂纹不是十分严重,如果到达贴片内部电极,焊剂中的有机酸和湿气会通过裂纹的缝隙侵入,导致绝缘电阻性能降低。另外,电压负荷会变高,电流的流量过大时,最糟糕的情况会导致短路。


一旦出现了扭曲裂纹,是很难从外面将其去除的,因此为了防止裂纹的产生,应当控制不要施加过大的机械力。


一般电容封装越大,越容易产生机械应力失效。


6.1.2 机械应力行为


那么,常见会出现应力的行为有哪些呢?


①贴片原因:贴片机拾取电容力度过大,施力点不在中心,电容不平都可能碰坏电容。


②过量焊锡:当温度变化时,过度的焊锡在贴片电容器上面产生很高的张力,从而是电容器断裂,焊锡不足时又会使电容器从PCB上剥离。


③PCB弯曲:焊接到PCB板上后,PCB弯曲,拉动瓷片电容,过应力后损坏。

④跌落、碰撞:PCB/成品跌落导致振动或变形,使电容受到机械应力。

⑤手工焊接:突然加热或冷却导致张力比较大(解决办法是先预热)


6.1.3 PCB设计注意事项


电容放置方向平行于PCB弯曲方向,放置位置远离PCB大形变位置。避免电容在长边受力,如下图,右边的电容摆放就就左边要好。

下图PCB拼板,受力大小是:A>B、A>B、A>C、A>D

电容也需要远离螺丝孔、减小应力。

6.2 啸叫


一般温度特性为X5R/B,X7R/R的高介电常数陶瓷电容器中,电介质材料使用强介电性的钛酸钡系的陶瓷,具有压电效应。

在施加交流电压时,独石陶瓷电容器贴片会发生叠层方向伸缩。因此电路板也会平行方向伸缩,而因电路板的振动而产生了噪声。贴片及电路板的振幅仅为1pm~1nm左右,但发出的声响却十分大。

其实几乎无法听到电容器本身发出的噪声,但将其安装于电路板后振动会随之增强,振幅的周期也达到了人耳能够听到的频率带(20Hz~20kHz),所以声音可通过人耳进行识别。例如可听到"ji----"、"ki----""pi----"等声响。


陶瓷电容器的"啸叫"现象,其振动变化仅为1pm~1nm左右,为压电应用产品的1/10至几十分之一,非常之小,因此我们可以判断这种现象对独石陶瓷电容器本身及周围元器件产生的影响,不存在可靠性问题。

文章来源:硬件工程师炼成之路

免责声明本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

 戳#阅读原文# ,精彩继续,你若喜欢,#分享//在看#

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论 (0)
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 221浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 161浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 164浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 197浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 185浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 104浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 136浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 140浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 189浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 169浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 213浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 161浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 185浏览
  • 晶振在使用过程中可能会受到污染,导致性能下降。可是污染物是怎么进入晶振内部的?如何检测晶振内部污染物?我可不可以使用超声波清洗?今天KOAN凯擎小妹将逐一解答。1. 污染物来源a. 制造过程:生产环境不洁净或封装密封不严,可能导致灰尘和杂质进入晶振。b. 使用环境:高湿度、温度变化、化学物质和机械应力可能导致污染物渗入。c. 储存不当:不良的储存环境和不合适的包装材料可能引发化学物质迁移。建议储存湿度维持相对湿度在30%至75%的范围内,有助于避免湿度对晶振的不利影响。避免雨淋或阳光直射。d.
    koan-xtal 2025-04-28 06:11 139浏览
我要评论
0
2
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦