关于电阻的使用,为什么会有这么一条经验法则?

面包板社区 2021-06-01 17:33


按照许多年前老师的淳淳教导,通常我们会在运算放大器的两个输入端放上相等的阻抗。为什么会有这么一条经验法则?我们是否应当遵循这种做法呢?请先思考30秒……

先来看看老师的教导……


如果您是在741运算放大器 横行天下的时代长大的,那么平衡运算放大器输入端电阻的观念必定已扎根在您的脑海中。随着时间的流逝,由于不同电路技术和不同IC工艺的出现,这样做可能不再是对的。事实上,它可能引起更大直流误差和更多噪声,使电路更不稳定。我们以前为什么要那样做?什么变化导致我们现在这样做可能是错误的?


在二十世纪六十年代和七十年代,第一代运算放大器采用普通双极性工艺制造。为了获得合理的速度,差分对尾电流一般在10 µA到20 µA范围内。


而β值为40到70,故输入偏置电流在1 μA左右。然而,晶体管匹配度并不那么高,所以输入偏置电流不相等,导致输入偏置电流之间有10%到20%的偏差(称为“输入失调电流”)。


在同相接地输入端增加一个与输入电阻R1和反馈电阻R2的并联组 合相等的电阻(图1中的R3),可以让阻抗相等。通过一些计算可 以证明,误差降至Ioffset × Rfeedback。由于Ioffset为Ibias的10%到20%,这将有助于降低输出失调误差。


图1. 经典反相放大器


从三个指标来看,上述教导是否完全正确?


1、直流误差

为降低双极性运算放大器的输入偏置电流,许多运算放大器设计集成了输入偏置电流消除功能。OP07就是一个例子。输入偏置电流消除功能的增加使偏置电流大大降低,但输入失调电流可能为剩余偏置电流的50%到100%,所以增加电阻的作用非常有限。但在某些情况下,增加电阻反而可能导致输出误差提高。


2、噪声

电阻热噪声的计算公式为√4kTRB,故1 kΩ电阻会有4 nV/√Hz的噪声。增加电阻会增加噪声。图2中,出人意料的是,虽然909 Ω补偿电阻是值最低的电阻,但由于从该节点到输出端的噪声增益,它给图2输出端贡献的噪声最多。R1引起的输出噪声为40 nV/√Hz,R2为12.6 nV/√Hz,R3为42 nV/√Hz。因此,请勿使用电阻。另一方面,如果运算放大器采用双电源供电,并且一个电源先于另一个电源上电,那么ESD网络可能发生闩锁问题。这种情况下,可能希望增加一定的电阻来保护器件。但若使用的话,应在电阻上放置一个旁路电容以减少电阻的噪声贡献。


图2. 噪声分析


3、稳定性

所有运算放大器都有一定的输入电容,包括差模和共模。如果运算放大器连接为跟随器,并且在反馈路径中放入一个电阻以平衡阻抗,那么系统可能容易发生振荡。原因是:大反馈电阻、运算放大器的输入电容和PC板上的杂散电容会形成一个RC低通滤波器(LPF)。此滤波器会引起相移,并降低闭环系统的相位裕量。如果降低得太多,运算放大器就会振荡。一位客户在一个1 Hz Sallen-Key低通滤波器电路中使用AD8628 CMOS运算放大器。由于转折频率较低,电阻和电容相当大(参见图3)。


图3. 您所见


输入电阻为470 kΩ,所以客户在反馈路径中放入一个470 kΩ电阻。此电阻与8 pF的输入电容(参见图4)一起提供一个42 kHz的极点。AD8628的增益带宽积为2 MHz,因此它在42 kHz仍有大量增益,并发生了轨到轨振荡。把470 kΩ电阻换成0 Ω跳线即解决了问题。因此,反馈路径中应避免使用大电阻。这里,何者为大取决于运算放大器的增益带宽。对于高频运算放大器,例如增益带宽积超过400 MHz的ADA4817-1,1 kΩ反馈电阻就称得上是大电阻。务必阅读数据手册以了解其中的建议。


图4. 电子所见


当然,多年来的实践必定会产生一些有用的经验法则。但在审核设计时,最好仔细检视这些经验法则,判定它们是否仍然适用。关于是否需要增加平衡电阻,如果是带有输入偏置电流消除功能的CMOS、JFET或双极型运算放大器,那么可能不需要增。




—END—

热门推荐:




调制的理解

飞针测试


硬件工程师必知的 | 功放电路大全


深度剖析:IGBT的结构与工作原理


C语言指针最详尽的讲解


一文看懂差分线



 内容合作 视频、课程合作 | 开发板合作转载开白 

 请联系小助手微信:15889572951(微信同号)


点击阅读原文,下载《PID控制原理及编程方法》

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论 (0)
  • 相信很多小伙伴都用过下面这个MOS管开关电路,但是有多少小伙伴了解在MOS管开关过程中,输入电压、输出电压和MOS管上的电流都是怎么变化的?特别是输出端有大负载电容时,最大浪涌电流能到多少呢?今天小编专门写一篇文章,通过理论结合仿真的方式给大家分析下~首先建立一个电路图:假定电源电压V5=12V,内阻Rs=10毫欧;MOS管的导通与关闭由$V_6$控制;负载设定为100mF电容+$12\Omega$电阻。上升阶段当控制信号输出高电平时,$V_6$电压会逐渐上升,当电压上升到三极管$Q_3$的门槛
    龙猫讲电子 2025-04-11 23:01 48浏览
  •   天空卫星健康状况监测维护管理系统:全方位解析  在航天技术迅猛发展的当下,卫星在轨运行的安全与可靠至关重要。整合多种技术,实现对卫星的实时监测、故障诊断、健康评估以及维护决策,有力保障卫星长期稳定运转。  应用案例       系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。  一、系统架构与功能模块  数据采集层  数据处理层  智能分析层  决策支持层  二、关键技术  故障诊断技术  
    华盛恒辉l58ll334744 2025-04-10 15:46 177浏览
  • MASSAGE GUN 筋膜枪拆解 今天给车子做保养,厂家送了一个筋膜枪。产品拿在手里还是挺有分量的。标价108元。通过海鲜市场一搜索,几十元不等,而且还是爆款。不多说,我们就来看看里面用了什么料,到底值几个钱。外观篇 首先给它来个开箱照,从外观看,确实还是很精致,一点都不逊色品牌产品。 从箱中取出筋膜枪,沉甸甸的。附上产品的各方位视角 产品的全家福 我装上球头,使用了一番,还真不赖,有不同的敲击速度和根据力度调节不同的档位。拆解篇 拿出我的螺丝套装,对产品开始进行拆解,首先
    zhusx123 2025-04-13 16:52 41浏览
  • 背景近年来,随着国家对资源、能源有效利用率的要求越来越高,对环境保护和水处理的要求也越来越严格,因此有大量的固液分离问题需要解决。真空过滤器是是由负压形成真空过滤的固液分离机械。用过滤介质把容器分为上、下两层,利用负压,悬浮液加入上腔,在压力作用下通过过滤介质进入下腔成为滤液,悬浮液中的固体颗粒吸附在过滤介质表面形成滤饼,滤液穿过过滤介质经中心轴内部排出,达到固液分离的目的。目前市面上的过滤器多分为间歇操作和连续操作两种。间歇操作的真空过滤机可过滤各种浓度的悬浮液,连续操作的真空过滤机适于过滤含
    宏集科技 2025-04-10 13:45 163浏览
  • 技术原理:非扫描式全局像的革新Flash激光雷达是一种纯固态激光雷达技术,其核心原理是通过面阵激光瞬时覆盖探测区域,配合高灵敏度传感器实现全局三维成像。其工作流程可分解为以下关键环节:1. 激光发射:采用二维点阵光源(如VCSEL垂直腔面发射激光器),通过光扩散器在单次脉冲中发射覆盖整个视场的面阵激光,视场角通常可达120°×75°,部分激光雷达产品可以做到120°×90°的超大视场角。不同于传统机械扫描或MEMS微振镜方案,Flash方案无需任何移动部件,直接通过电信号控制激光发射模式。2.
    robolab 2025-04-10 15:30 233浏览
  • 华为Freebuds pro 耳机拆解 2020年双十一花了1000大洋买了华为的Freebuds pro,这个耳机的降噪效果真是杠杠的。完全听不到外边的噪音。几年后当我再次使用这款耳机的时候。发现左耳没带多久就自动断连了。后来查了小红书说耳机的电池没电了导致,需要重新配一只,华为售后不支持维修支持更换。而且配件的价格要好几百。真是欲哭无泪,还没用多久呢。后来百度了都说这个不是很好拆(没有好工具的前提下)。 虽然网上已经有很多拆解的视频和介绍了,今天我还是要拆解看看里面是怎么样的构造(暴力)。拿
    zhusx123 2025-04-12 23:20 35浏览
  • 行业变局:从机械仪表到智能交互终端的跃迁全球两轮电动车市场正经历从“功能机”向“智能机”的转型浪潮。数据显示,2024年智能电动车仪表盘渗透率已突破42%,而传统LED仪表因交互单一、扩展性差等问题,难以满足以下核心需求:适老化需求:35%中老年用户反映仪表信息辨识困难智能化缺口:78%用户期待仪表盘支持手机互联与语音交互成本敏感度:厂商需在15元以内BOM成本实现功能升级在此背景下,集成语音播报与蓝牙互联的WT2605C-32N芯片方案,以“极简设计+智能交互”重构仪表盘技术生态链。技术破局:
    广州唯创电子 2025-04-11 08:59 228浏览
  • 由西门子(Siemens)生产的SIMATIC S7 PLC在SCADA 领域发挥着至关重要的作用。在众多行业中,SCADA 应用都需要与这些 PLC 进行通信。那么,有哪些高效可行的解决方案呢?宏集为您提供多种选择。传统方案:通过OPC服务器与西门子 PLC 间接通信SIMATIC S7系列的PLC是工业可编程控制器,能够实现对生产流程的实时SCADA监控,提供关于设备和流程状态的准确、最新数据。S7Comm(全称S7 Communication),也被称为工业以太网或Profinet,是西门
    宏集科技 2025-04-10 13:44 198浏览
  • 什么是车用高效能运算(Automotive HPC)?高温条件为何是潜在威胁?作为电动车内的关键核心组件,由于Automotive HPC(CPU)具备高频高效能运算电子组件、高速传输接口以及复杂运算处理、资源分配等诸多特性,再加上各种车辆的复杂应用情境等等条件,不难发见Automotive HPC对整个平台讯号传输实时处理、系统稳定度、耐久度、兼容性与安全性将造成多大的考验。而在各种汽车使用者情境之中,「高温条件」就是你我在日常生活中必然会面临到的一种潜在威胁。不论是长时间将车辆停放在室外的高
    百佳泰测试实验室 2025-04-10 15:09 161浏览
  •     电气间隙是指两个带电体在空气中的最短距离。导体、电介质(空气),最短距离,就是这个术语的要素了。        (图源:TI)    电气间隙是由安装类别决定的,或者更本质地说,是瞬态过电压的最大值来决定的,而不是工作电压的高低。安装类别见协议标准第007篇,瞬态过电压另见协议标准第009篇。    实际设计中怎么确定电气间隙?可以按照CAT,工作电压和绝缘等级来定。 
    电子知识打边炉 2025-04-13 18:01 43浏览
  • 文/Leon编辑/侯煜‍关税大战一触即发,当地时间4月9日起,美国开始对中国进口商品征收总计104%的关税。对此,中国外交部回应道:中方绝不接受美方极限施压霸道霸凌,将继续采取坚决有力措施,维护自身正当权益。同时,中国对原产于美国的进口商品加征关税税率,由34%提高至84%。随后,美国总统特朗普在社交媒体宣布,对中国关税立刻提高至125%,并暂缓其他75个国家对等关税90天,在此期间适用于10%的税率。特朗普政府挑起关税大战的目的,实际上是寻求制造业回流至美国。据悉,特朗普政府此次宣布对全球18
    华尔街科技眼 2025-04-10 16:39 188浏览
  •   海上电磁干扰训练系统:全方位解析      海上电磁干扰训练系统,作为模拟复杂海上电磁环境、锻炼人员应对电磁干扰能力的关键技术装备,在军事、科研以及民用等诸多领域广泛应用。接下来从系统构成、功能特点、技术原理及应用场景等方面展开详细解析。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   一、系统构成   核心组件   电磁信号模拟设备:负责生成各类复杂的电磁信号,模拟海上多样
    华盛恒辉l58ll334744 2025-04-10 16:45 276浏览
  • 迈向可持续未来的征程中,可再生能源已成为全球发展的基石。在可再生能源中,太阳能以其可及性和潜力脱颖而出。光伏(PV)逆变器是太阳能系统的核心,它严重依赖先进技术将太阳能电池板的直流电转换为可用的交流电。隔离栅极驱动器就是这样一种技术,它在提高这些系统的效率、安全性和可靠性方面发挥着至关重要的作用。了解隔离栅极驱动器隔离栅极驱动器是一种专用电路,可提供驱动功率晶体管(例如MOSFET或IGBT)所需的控制信号,同时确保控制侧和电源侧之间的电气隔离。这种隔离对于维护安全性、减少电磁干扰和防止高压环境
    腾恩科技-彭工 2025-04-11 16:16 43浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦