全面了解 Sub-6Ghz 大规模 MIMO 基础设施! 微观拆解:陶瓷滤波器和有源晶振!

滤波器 2021-05-30 07:21


全面了解 Sub-6Ghz 大规模 MIMO 基础设施! 

人们对新一代移动网络 5G 的迅速普及感到非常兴奋,同时也充满了期待。分析师预测,2020 年商用 5G 网络的数量翻两番;5G 连接的总数将从 2019 年的 500 万增长到 2025 年的 28 亿;到 2026 年,5G 技术的全球市场规模将达到 6679 亿美元。遗憾的是,要实现这些宏伟的覆盖目标并非易事,它需要对现有移动网络基础设施(尤其是射频电源应用)进行重大变革。

(来源:维基百科)

为了满足 RF 前端的功率需求,原始设备制造商(OEM)开始使用氮化镓 (GaN)这种相对较新的商用半导体材料。其功率效率、功率密度以及处理更宽频率范围的能力使其非常适合大规模 MIMO 基站应用。本系列文章共有四部分,将分别探讨采用 GaN 的驱动因素、GaN 的半导体应用价值、嵌入式设计人员如何将 GaN 合理整合到设备中,以及未来将会出现哪些 GaN 创新。



全面了解 MIMO


要想充分发挥 5G 的数 Gbps 数据传输速度和超低延迟潜力,移动运营商需提高所有网络参数的性能。这意味着要对频谱采集、网络基础设施和传输技术进行大量投资。无论采取何种方式实现,对移动网络运营商来说,在全国范围内部署 5G 的成本都非常高。以较低成本提供 5G 服务是普及 5G 技术的最大障碍。尽管高频毫米波备受关注,但运营商目前仍采用 Sub-6GHz 大规模 MIMO 技术,以最大限度地降低成本,并在全国移动网络中部署 5G。

MIMO(多路输入/多路输出)是一种无线通信的天线技术,它采用多天线发送和接收信号。

与传统无线通信中通常使用单天线不同,MIMO 通过不同天线以多种信号的形式发送相同数据。这样就可以实现空间复用,其中每个信道都向接收器传送独立信息,因此与传统的单天线相比,MIMO 具有诸多优势。

当射频信号遇到建筑物等障碍物时,信号会散射,并通过不同的路径到达目标接收器。在单天线系统中,这种多路径传播会导致接收不良、通话断线以及数据传输速度急剧下降等问题。MIMO 无线电可接收合并多个相同数据的传输流,因此可使用多路径传播来提高信号质量和强度。如果传播环境中散射足够丰富,在分配的相同带宽中会生成许多独立的子信道,从而在不需要额外带宽或功率的情况下,实现质量和信号增益。网络运营商可专注于构建更多天线来满足需求,而不是更多基站。

MIMO 天线阵列还可以利用波束成形和波束控制技术将信号聚焦于单个用户方向。单天线向所有方向传播无线信号,而通过数字和模拟方式,多天线可以将信号聚焦到特定方向,指向接收器,这大大提高了频谱效率和功率效率。



5G 大规模 MIMO


历代无线技术都利用 MIMO 天线阵列技术的进步来提高网络速度。3G 引入单用户 MIMO,后者利用多个同步数据流将数据从基站传输给单个用户。4G 系统运用多用户 MIMO 技术,将不同数据流分配给不同用户,以实现明显的容量和性能优势。利用 5G 新无线标准,MIMO 可实现“大规模”部署。4G 系统通常配备四个发射天线和四个接收天线,即 4x4 天线阵列。5G 大规模 MIMO 采用更多的发射和接收天线来提高发射增益和频谱效率;有些阵列达到 256x256。

由于大规模 MIMO 采用更多天线,因此发送到接收器的信号波束要窄得多。这样,基站就能够更精确、更有效地向客户提供 RF 能量。每个天线的相位和增益都是单独控制,并且信道信息将保留在基站,所以移动设备无需使用多个接收器天线。大量的基站天线会提高基站的信噪比,从而提高基站的容量和吞吐量。

同样重要的是,5G 技术基于 4G 网络基础设施构建,并且可以通过动态频谱共享与之前的技术共享频谱。这样,移动网络运营商就能够提高网络容量,支持高速数据传输,并节约频谱,同时尽可能降低运营费用。



毫米波的未来,Sub-6 GHz 现实


毫米波技术(或 mmWave)和 5G 常被误认为是同义词。毫米波是 5G 网络使用的 24GHz 至 100GHz 射频频谱上的一个频段,Sub-6 GHz 是指“低频段”和“6 GHz 以下”频率。由于该频段的信号传播损耗高,并且会被建筑物、树叶、雨水和人体阻挡,所以之前我们认为毫米波不适合用于移动通信。然而,这些短波长能够在短距离内传输更多数据。显然,要想实现 5G 的 20Gb/s 数据速率目标,最终需使用毫米波频谱。虽然移动通信领域的许多人都对其发展前景兴奋不已,但在全国范围内推广该技术所面临的物流挑战并未得到足够的重视。

若从基站的角度来看毫米波,这一点就尤为明显。毫米波基站的传输范围比发射更低频率信号的基站塔更小。据研究人员估计,为实现全国覆盖,美国网络运营商将需要构建 1300 万个基站。相比之下,支持当今美国移动网络的基站塔数量约为 30 万个。由于满足毫米波功耗要求的成本非常高,所以在全国范围内实现这些毫米波基站的资本支出进一步增加。除体育馆和城市热点之外,未来几年在全国部署毫米波技术是不现实的。

虽然 OEM 厂商在努力降低毫米波技术的成本,但 5G 网络运营商仍将依赖于 Sub-6 GHz 频段。低频信号能进一步穿透建筑物等障碍物,并在消失前覆盖基站塔周围更大的区域范围,因此适合农村和城市地区。这意味着,Sub-6 GHz 的 5G 网络可通过更少的基站实现更大的覆盖范围,并可使用运营商现有的基站。



大规模 MIMO 基础设施需求


尽管 Sub-6 GHz 的 5G 网络无法像毫米波技术那样实现大幅的速度提升,但其大规模 MIMO 天线阵列可支持更多的同步连接,提高信号吞吐量,并在用户覆盖和容量之间实现最佳平衡。所以说,Sub-6 GHz 的 5G 是更加切实可行的实现途径。与毫米波部署相比,Sub-6 GHz 的 5G 可更迅速地提高移动宽带的速度和一致性。在向全集成式 5G 网络迈进的同时,它还可以即时改进当前的 4G 系统。因此,许多业内人士希望运营商竞标较低频谱范围,以便利用动态频谱共享在同一频段提供 3G、4G 和 5G 服务。我们已看到有国际 5G 实施方案运用了这种方法。韩国两年前就开始推出低频 5G,而中国将对其整个网络基础设施进行改革,以便在未来几年内实现全国范围的 5G 覆盖。

这并不是说 Sub-6 GHz 的 5G 部署非常简单;这些新技术也会带来巨大的系统设计挑战。为了在 5G 基站上采用大规模 MIMO 技术,设计人员需要开发包含数百个天线元件的高度复杂的系统。许多系统采用有源相位阵列天线,以便向特定用户提供动态波束成形和波束控制功能。所有这些附加天线可提高性能,但这些大型天线阵列需要更多功率,并要求使用专用的 RF 前端 (RFFE) 芯片组和放大器。

构建 RF 前端以支持这些新的 Sub-6 GHz 5G 应用将是一项挑战。RFFE 电路对 4G 系统的功率输出、选择性和功耗都至关重要。5G 调制机制提出了额外的需求,因此无线基础设施功率放大器 (PA) 需具备非常高的效率,才能实现所需的线性度。此外,峰值功率和最低功率要求之间的巨大差异会给功率放大器和 RF 前端带来散热问题。 
作者:Roger Hall, Qorvo 高性能解决方案业务部总经理
来源:知乎 韩非子





微观拆解:陶瓷滤波器和有源晶振!


下图是陶瓷滤波的基本结构和原理,由锆钛酸铅等粉末高温烧结压铸的陶瓷片经高压直流极化后形成具有压电效应的压电材料,具有压电效应和谐振选频功能。



和普通晶振晶体特性类似,因此通过组合可制成各类陶瓷谐振器或者滤波器等器件,下图是其等效电路,和晶振差不多。



下图是一颗455khz中频陶瓷带通滤波器



塑封



塑料外壳树脂灌封,三引脚。



显微摄影



底部



剥离部分外壳后露出电极片



一共四颗陶瓷片,两个稍厚,两个薄一些。



抽出一片,中间有个金属垫片负责固定和保证接触良好。



另一面有个弹性垫片压紧



第一颗陶瓷片,表面镀银。



另一面中心部位镀银(这个面积根据设计需要,可以微调谐振频率),



侧面



第二片陶瓷,薄一些。



双面镀银,且面积一样。



全部取出后,两个厚的完全一样,两个薄的也是一样。



电极分布,底部有个绝缘垫片,负责隔离u形电极片。



通过陶瓷片的组合获得设计功能



全部部件



下面也是一颗中频陶瓷带通滤波器,通带频率较高。



反面



侧面用胶将两层粘合起来



加热后分离顶盖(这几张对焦不太好),两个梳状陶瓷片。



拿下一片



反面



全部取下



陶瓷衬底上有胶质绝缘层,刮开可以看到镀银电极引线。



其实每一片陶瓷片有多个电极度层,实现多个陶瓷谐振器的整合,减小体积。



反面



这个就更小了,也是陶瓷带通滤波器。



多层压接在一起



反面



除去底部外壳



去除上盖,中间还有三层,中间是隔离层,只有中间两层是陶瓷片。



去除顶盖后



准备分离中间三层



刀片撬入



由于分离需要经过高温加热变得很脆,有些碎裂。

电极分布走线形状更加复杂



中间的隔离层



这个是巴伦滤波器,有滤波功能同时还具有单端转差分和阻抗变换的作用,多用于tx输出到rf功放之间的滤波和差分变换工作。



体积比较小和一粒米相当,现在的此类滤波器会更加的小,和芝麻类似。



陶瓷粉末烧结封装了,很难拆解了。



粘到手指上磨一下,除了一些电极没看到什么。



烧红冷却暴力分离,也只看到一些铜色电极,内部结构已经融为一体了,陶瓷材料也和上面不同,通体纯白,无法继续分解了。



下面是一颗高频rf带通滤波器,工作频段ghz以上。



侧面,同样陶瓷烧结封装。



底部



无奈同样暴力分解



和上面如出一辙,也只能看到一些多层引线电极,但是不是镀银了,是紫铜。

看来以后想获得真相也越来越难了



最后赠送一个13mhz有源晶振,金属外壳已经去除。



反面



陶瓷基材,类似厚膜工艺。

一颗奇特的可调电容,用来微调震荡频率。



拆下来看看



估计很多坛友也没见过这样的微调电容,我也是第一次见,一颗异形mlcc电容上镶嵌了一个可调部件。



底部



刀片分离



分离后



作用原理



旋帽反面特写



垫圈



旋帽正面特写



整体的反面,一颗6脚震荡ic,和外围组成振荡电路。



这个是晶振了,6脚的,其实4个腿儿都是地。



磨去金属顶壳



分离



看到晶体了



双面镀金,和电极靠银浆连接。



侧面特写



全部残骸




|推荐阅读|



  • SAW声表滤波器与BAW滤波器技术

  • 使用超过10年的基站天线之拆机详解

  • 如何正确校准网络分析仪及S参数测量

  • 滤波器专业英语初级篇(更新版)

  • 爱立信收购凯仕林天线和滤波器部门

  • 滤波器专业英语初级篇(更新版)

  • 怎样正确使用1/4波长线代替一级电感

  • 国内首款BAW四工器产品下线

  • 5G陶瓷介质滤波器逐步成为行业主流!

  • 三阶互调频率截取点测试方法

  • Q值测试及Qo与单腔大小的关系

  • 滤波器无源互调(二)

  • 突破!5G陶瓷滤波器创新工艺(更新)

  • 这25家滤波器公司都不知道,真是白活了

© 滤波器 微信公众号

滤波器 欢迎滤波器+微波射频行业人士关注! 掘弃平庸,学习更专业的技术知识!
评论
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 141浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 88浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 85浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 50浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 102浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 71浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 79浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 71浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 109浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 83浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 51浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦