Argo AI自动驾驶系统分析

汽车电子与软件 2021-05-26 22:47
  鉴于自动驾驶开发成本高,大众和福特投资了合资公司Argo AI进行联合开发。2019年7月,经过数月的谈判之后,大众同意以 70 亿美元的估值向 Argo 注资 26 亿美元。其中,包括 10 亿美元现金以及价值 16 亿美元的大众自动驾驶子公司 AID(Autonomous Intelligent Driving)。作为交易的一部分,大众需要从福特手里收购价值 5 亿美元的 Argo AI 股份。2020年6月2日,交易完成。大众将与福特持有相同的股份,剩余部分则归Argo AI公司员工所有。Argo AI公司的董事会也会由5人增至7人,其中大众和福特各占2个席位,另外的3个席位则归属于Argo AI自己。

  Argo AI与大多数自动驾驶公司将总部放在加州也不一样,其总部位于匹兹堡,美国汽车工业心脏地带,而不是加州的高科技地带。2016 年9月,前 Google 员工 Salesky 和前 Uber 员工 Peter Rander 联合创办了 Argo AI。2017年2月,福特公司10 亿美元注资 Argo AI。分析Argo AI的自动驾驶系统就等同于分析大众和福特的自动驾驶系统。

图片来源:Argo AI

  2021年4月,Argo AI发布了安全报告书Safety Report。大众进入大众微门户福特(进入福特微门户)表示大约在2024年有利用Argo AI技术的自动驾驶车辆量产。

大众自动驾驶车辆效果图,图片来源:Argo AI

Argo AI自动驾驶架构图,图片来源:Argo AI

  可以看出和丰田L4一样,也是两套独立的转向与制动系统。还特别点出了加了IMU和速度传感器,应该不是像特斯拉之类量产车上不到1美元的IMU(博世在这个领域市场占有率估计有90%)。和Waymo一样,也有针对救护车、消防车、警车的紧急鸣笛探测系统。

图片来源:Argo AI

  Argo AI的自动驾驶原型车辆在2021年进入第四代。

图片来源:Argo AI

  Argo AI的第四代自动驾驶原型车辆使用4个激光雷达,9个毫米波雷达,12个摄像头。一个是Velodyne的128线远距离激光雷达,3个自行开发的短距离激光雷达,两个前向,一个后向。短距离激光雷达使用SPAD单光子接收阵列,因为ArgoAI在2017年收购了激光雷达初创公司Princeton Lightwave(该公司是SPAD的拥趸),具体交易额不详,估计在1亿美元上下。3个前向毫米波雷达,其中一个位于车顶。4个侧向毫米波雷达,位于轮眉上方,隐藏在车内,外观上看不出来。应该是4个级联的77-81GHz高分辨率毫米波雷达。两个后向毫米波雷达。两个车轮处的短距离摄像头,一个立体双目摄像头,七个顶置摄像头,一个后向摄像头。

图片来源:Argo AI

  与Argo AI的第三代自动驾驶原型车辆相比,用128线激光雷达代替了原来的两个堆叠的32线激光雷达VLP-32C。大幅增加了毫米波雷达和近距离激光雷达,主要的视觉和激光雷达部分实际变换不大。7个200万像素摄像头呈环状分布,帧率30Hz,一个500万像素双目摄像头,帧率5Hz,基线宽29.86厘米。

Argo AI的第四代自动驾驶原型车辆正面照,
图片来源:Argo AI

  Argo AI的第四代自动驾驶原型车辆正面照,立体双目与毫米波雷达在顶部自动驾驶传感器系统的正中间。

Argo AI的第四代自动驾驶原型车辆顶部特写,
图片来源:Argo AI

  Argo AI最强调的是移动目标的行动轨迹做出预测,就像人类驾驶的预判,这样才是真正的自动驾驶,才能提高安全性。也就是MODT(Moving Object Detection and Tracking)。同时Argo AI也是美国唯二的使用自制高精度地图的自动驾驶原型车,另外一家是安波福。Argo AI的数据集名为Argoverse。

Argoverse与其他数据集的对比,
图片来源:Argo AI

图片来源:Argo AI

  Argo AI用激光雷达鸟瞰图(Bird Eyed View)视觉化,车辆或其他目标用3D框标注,用双目计算出可行驶区域,并用青色表示,用黄线表示边界。即道路表面语义分割,Road Surface Freespace Segmentation,分出路面、移动物体(障碍物)、固定不动的(Solid)。通常用基于概率的占用网格加动态规划(Dynamic Programming)的算法获取。与丰田的L4系统基本没差别。

图片来源:Argo AI

  Argo AI用高精度地图移除地面静态物体。有了高精度地图,再配合激光雷达鸟瞰图,可以准确地移除基于地面的静止目标,减轻自动驾驶的感知计算复杂程度,更容易识别出重要的运动目标。如果地面有坡度,这种算法难度较高,Argo AI用准确的高度匹配和3D地图解决这个问题,最终效果如右边一列。

图片来源:Argo AI

  Argo AI用激光雷达和摄像头自己制作了高精度地图,左图为激光雷达与摄像头融合图,右图为高精度地图。

  Argo AI的骄傲之处是移动目标的轨迹预测,Argo AI在YouTube上两段视频有直观表示。

  在移动目标轨迹运动预测中,Argoverse可以预测将来某个时间跟踪对象的位置。许多车辆的运动相对无意义-在给定的帧中,大多数汽车都以几乎恒定的速度停泊或行驶。这样的轨迹很难代表真实的预测挑战。Argo AI想要一个具有多种场景的基准测试,例如交叉路口,车道合并车辆减速,转弯后加速,道路上的行人停车等。为了对这些有趣的场景进行足够的采样,Argo跟踪了迈阿密和匹兹堡1006个行驶小时内的物体,并找到了Argo感兴趣的车辆在那320小时内的行为。主要包括(1)在十字路口,要么(2)左转或右转,(3)转向相邻车道,或者(4)在交通繁忙时 。Argo总共收集了324,557个5秒序列,并将其用于预测基准。

  每个序列都包含以10 Hz采样的每个被跟踪物体的2D鸟瞰中心。每个序列中的“焦点”对象始终是车辆,但是其他跟踪的对象可以是车辆,行人或自行车。它们的轨迹可用作“社会(Social)”预测模型的上下文。324,557个序列分为205,942个训练序列,39,472个验证和78,143个测试序列。每个序列都有一个具有挑战性的轨迹。训练、验证和测试序列取自城市的不相连部分,即每个城市的大约八分之一和四分之一被分别留作验证和测试数据。该数据集远大于可以从公共可用的自动驾驶数据集中挖掘的数据集。如此规模的数据很吸引人,因为它使我们能够看到罕见的行为并训练复杂的模型,但它太大了,无法详尽地验证开采轨迹的准确性,因此,数据中固有一些噪声和误差。

  Argo AI使用关联速度( Constant Velocity),最小近邻(NN)和LSTM来做预测。给定车辆轨迹的过去输入坐标Vi ,其中对于时间步长t的 X,预测时间步长T的未来坐标 Y。对于汽车,5 s足以捕获轨迹的显著部分,例如。过十字路口。Argo将运动预测任务定义为观察20个过去的帧(2 s),然后预测未来的30个帧(3 s)。每个预测任务可以按相同顺序利用其他对象的轨迹来捕获交通环境并为空间环境映射信息。

图片来源:Argo AI
 
  Argo使用最小平均距离误差Average Displacement Error (minADE)、最小最终距离误差  minimum Final Displacement Error (minFDE)可行驶区域服从度、DAC (Drivable Area Compliance)、Miss Rate (MR,阈值为1米) 来评估预测效果。minADE指的是轨迹的ADE,具有最小FDE,而不是最小ADE,因为要评估单个最佳预测。就是说,minADE误差可能不是一个足够的指标。K指一条路径上的预测次数。如果只预测一次,LSTM效果比较好,预测多次,NN加地图性能更好。无论哪一种,加了地图之后性能都更好。

图片来源:Argo AI

  Argo AI在6个城市展开测试。每个城市都有独特之处。匹兹堡,主要是有起伏的上下坡路、狭窄街道、众多桥梁、五条道路的大型立交桥。底特律,四季分明,车道很宽,林荫道很多,中央车道掉头多。加州的PaloAlto,富豪云集,多散步、跑步和骑行者。度假胜地佛罗里达的迈阿密则是什么类型的交通元素都有包括轻便摩托车(mopeds)、滑板车(scooter)、滑轮者rollerbladers、平衡车hoverboards,还有重型卡车和公交车以及校车。德州奥斯汀跟迈阿密近似。华盛顿,交通堵塞严重,交通管制复杂,环岛众多。与Waymo主要在行人稀少,路况简单的凤凰城比,Argo AI的难度要高很多,Argo AI认为这6个城市覆盖了美国的各种路况和气候。

  除了公开道路,Argo AI还有一个50英亩即大约20万平米的自建封闭测试园区,园区内有16公里长的道路。

图片来源:Argo AI

  Argo AI当然也开发了仿真工具做虚拟测试。

  Argo AI给出了自动驾驶的适用条件,即Operational Design Domain (ODD),最高时速不超过65英里也就是大约100公里。可以适应各种道路类型包括市区道路、郊区道路、村镇道路、高速公路、快速路,还有停车场或停车库,显然,它可以做AVP全自动泊车。因为有激光雷达可以24小时全天候运作,不需要任何照明。天气方面,下雨天也可以正常运作,只要不是暴雨,激光雷达基本可以正常工作。Argo AI也明确指出什么条件下不行,比如离路Off-Road。气候条件,大雪、雨夹雪、冰雹、冻雨、浓雾下不行。同时还有极端环境,比如地震、飓风、滑坡泥石流等。

  在2021年5月,Argo AI公布了自己最远有效距离可达400米的激光雷达,很快就会用自行开发的激光雷达取代Velodyne的128线激光雷达。

  和丰田一样,大众和福特的自动驾驶都是奔着自主量产方向的,不仅要低成本,还要自主掌控大部分系统,掌握大部分供应链,这也是Waymo潜在的危机,恐怕难有整车厂与其真心合作。



END
投稿合作:18918250345(微信)
汽车电子与软件 主要介绍汽车电子软件设计相关内容,每天分享一篇技术文章!
评论
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 52浏览
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 70浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 88浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 81浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 91浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 119浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 89浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 115浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 76浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 84浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦