STM32单片机实现SPI通信连续传送24位数据

嵌入式资讯精选 2021-05-22 10:11

一、前言

最近因为需要读取传感器数据,需要单片机发送命令,传感器返回24位数据,因为使用SPI传输数据,虽然命令只有8位,但是必须发送24位数据才能获得传感器的24位数据。关于SPI的知识可以查看如下的这篇文章:
SPI怎么玩?搞懂时序,运用自如
自己在这里困了很久,所以写这篇文章记录一下,也给后面需要的朋友一点帮助。
我的目的就是消除或者减小每帧数据之间的发送间隔。

二、GPIO配置

  GPIO_InitTypeDef GPIO_InitStructure;
  /* 使能AHB时钟 */
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE);
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);
  /*定义 SPI复用引脚 */
  GPIO_InitStructure.GPIO_Pin = PIN_SPI_SCK | PIN_SPI_MISO | 
  PIN_SPI_MOSI;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;                   //复用模式
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;              //高速输出
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;                 //推完输出
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;                   //上拉
  GPIO_Init(PORT_SPI_SCK, &GPIO_InitStructure);

  GPIO_PinAFConfig(GPIOB, GPIO_PinSource3, GPIO_AF_0);
  GPIO_PinAFConfig(GPIOB, GPIO_PinSource4, GPIO_AF_0);
  GPIO_PinAFConfig(GPIOB, GPIO_PinSource5, GPIO_AF_0);
  /* 片选CS */
  GPIO_InitStructure.GPIO_Pin = PIN_SPI_CS;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;                  //输出模式
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;                 //推完输出
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;              //高速输出
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;                   //上拉
  GPIO_Init(PORT_SPI_CS, &GPIO_InitStructure);

三、SPI配置

/* SPI 初始化定义 */
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; //SPI设置为双线双向全双工
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;                      //设置为主 SPI
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;                  //SPI发送接收 8 位帧结构
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;                        //时钟悬空低
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;                       //数据捕获于第二个时钟沿
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;                          //软件控制 NSS 信号
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8; //波特率预分频值为8
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;                 //数据传输从 MSB 位开始
SPI_InitStructure.SPI_CRCPolynomial = 7;                           //定义了用于 CRC值计算的多项式
SPI_Init(SPI1, &SPI_InitStructure);

SPI_RxFIFOThresholdConfig(SPI1, SPI_RxFIFOThreshold_QF);
SPI_Cmd(SPI1, ENABLE); 

此处有一点需要注意哦,STM32F0区别于STM32F1系列,SPI初始化后需要初始化RxFIFO:SPI_RxFIFOThresholdConfig(SPI1, SPI_RxFIFOThreshold_QF);
至于结构体参数的初始化参数,根据自己项目改。我里使用的是内部晶振超频56M,8分频获取7M的SPI时钟。(为了获取最大传输速度,别问为什么,就是需要这么干,之前在群里讨论我的时钟速度为什么上不去,结果很多人问我为什么要那么高的时钟,追求速度?什么东西要那么高的速度?。。。。。。。。我。。。。对了,顺便说一下遇到的坑,我有示波器和逻辑分析仪,我一直用逻辑分析仪,时钟怎么都上不去,一直是2M,真的是找遍了原因,最后是逻辑分析仪的速度设低了,让你手贱!让你手贱!!)
四、SPI发送接收(非DMA)
uint32_t SPI_WriteRead(void)
{
   uint16_t num1,num2,num3;
   uint32_t AngelData;
   GPIO_ResetBits(GPIOA, GPIO_Pin_15);//拉低片选
   *((uint8_t*)&(SPI1->DR) + 1 ) = 0x3F;//发送指令
   num1 = SPI1->DR;    //读SPI
   while(SPI_I2S_GetFlagStatus(SPI1,SPI_I2S_FLAG_TXE) == RESET);   
   while(SPI_I2S_GetFlagStatus(SPI1,SPI_I2S_FLAG_BSY) == RESET);

   *((uint8_t*)&(SPI1->DR) + 1 ) = 0xFF;//发送无关数据,为了获取返回数据
   num2 = SPI1->DR;//读SPI
   while(SPI_I2S_GetFlagStatus(SPI1,SPI_I2S_FLAG_TXE) == RESET);
   while(SPI_I2S_GetFlagStatus(SPI1,SPI_I2S_FLAG_BSY) == RESET);

   *((uint8_t*)&(SPI1->DR) + 1 ) = 0xFF;//发送无关数据,为了获取返回数据
   num3 = SPI1->DR;//读SPI
   while(SPI_I2S_GetFlagStatus(SPI1,SPI_I2S_FLAG_TXE) == RESET);
   while(SPI_I2S_GetFlagStatus(SPI1,SPI_I2S_FLAG_BSY) == RESET);
   GPIO_SetBits(GPIOA, GPIO_Pin_15);//拉高片选
   AngelData = ((num2&0xFF)<<16 |(num3&0xFF)<<8 | (num1&0xFF));
   return AngelData ;
}
说一下注意的点,STM32F0慎用while(SPI_I2S_GetFlagStatus(SPI1,SPI_I2S_FLAG_RXNE) == RESET);判断数据接收完整,非常容易卡死在这里面,可以使用忙标志判断,很好用,不然会提前拉高片选信号,导致数据不完整。
如图,我发送24位数据,时钟却输出很多。因为DR寄存器是16位的,如果你直接SPI1->DR = 0xFF ; 这样的操作是不正确的,你的数据会变成0x00FF之后赋值给DR寄存器,也就是操作了16位,所以STM32会输出16个时钟脉冲
解决方法:
我们先找到DR寄存器的地址,再用一个八位的指针指向这个地址,现在指向的是DR寄存器的开头,那么指针+1,指针指向了DR寄存器的低八位这时候给指针指向的地址赋值0xFF,那么这个字节就会放入DR低八位的空间内,而不是操作整个16位DR寄存器,
((uint8_t)&(SPI1->DR) + 1 ) = 0xFF;
经过上面的代码就已经可以获得24位数据,时钟也会连续,不会出现上面两张图片的问题,后面贴上DMA的代码。
五、SPI DMA配置
void MYDMA_TX_Config(DMA_Channel_TypeDef* DMA_CHx,uint32_t cpar,uint32_t cmar,uint16_t cndtr)
{
    DMA_InitTypeDef DMA_InitStructure;
    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);  //使能DMA传输
   DMA_DeInit(DMA_CHx);   //将DMA的通道3寄存器重设为缺省值
    DMA1_MEM_LEN=cndtr;
    DMA_InitStructure.DMA_PeripheralBaseAddr = cpar;  //DMA外设基地址
    DMA_InitStructure.DMA_MemoryBaseAddr = cmar;  //DMA内存基地址
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;  //数据传输方向,从内存读取发送到外设
    DMA_InitStructure.DMA_BufferSize = cndtr;  //DMA通道的DMA缓存的大小
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;  //外设地址寄存器不变
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;  //内存地址寄存器递增
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;  //数据宽度为8位
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; //数据宽度为8位
    DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;  //工作在正常缓存模式
    DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; //DMA通道 x拥有中优先级 
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;  //DMA通道x没有设置为内存到内存传输
    DMA_Init(DMA_CHx, &DMA_InitStructure);  //根据DMA_InitStruct中指定的参数初始化DMA的通道SPI_Tx_DMA_Channel所标识的寄存器

//开启一次DMA传输
void MYDMA_TX_Enable(DMA_Channel_TypeDef*DMA_CHx)

    DMA_Cmd(DMA_CHx, DISABLE );  //关闭SPI TX DMA1 所指示的通道      
     DMA_SetCurrDataCounter(DMA_CHx,DMA1_MEM_LEN);//DMA通道的DMA缓存的大小
     DMA_Cmd(DMA_CHx, ENABLE);  //使能SPI TX DMA1 所指示的通道 
}      


void MYDMA_RX_Confog(DMA_Channel_TypeDef* DMA_CHx,uint32_t cpar,uint32_t cmar,uint16_t cndtr)
{
        DMA_InitTypeDef DMA_InitStructure;
     RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);  //使能DMA传输

  DMA_DeInit(DMA_CHx);   //将DMA的通道2寄存器重设为缺省值

    DMA1_MEM_LEN=cndtr;
    DMA_InitStructure.DMA_PeripheralBaseAddr = cpar;  //DMA外设基地址
    DMA_InitStructure.DMA_MemoryBaseAddr = cmar;  //DMA内存基地址
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;  //数据传输方向,从外设到内存
    DMA_InitStructure.DMA_BufferSize = cndtr;  //DMA通道的DMA缓存的大小
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;  //外设地址寄存器不变
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;  //内存地址寄存器递增
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;  //数据宽度为8位
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; //数据宽度为8位
    DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;  //工作在正常缓存模式
    DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; //DMA通道 x拥有中优先级 
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;  //DMA通道x没有设置为内存到内存传输
    DMA_Init(DMA_CHx, &DMA_InitStructure);  //根据DMA_InitStruct中指定的参数初始化DMA的通道USART1_Tx_DMA_Channel所标识的寄存器
    DMA_Cmd(DMA1_Channel2, ENABLE);  //使能USART1 TX DMA1 所指示的通道 
}

//开启一次DMA传输
void MYDMA_RX_Enable(DMA_Channel_TypeDef*DMA_CHx)

    DMA_Cmd(DMA_CHx, DISABLE );  //关闭SPI RX DMA1 所指示的通道      
     DMA_SetCurrDataCounter(DMA_CHx,DMA1_MEM_LEN);//DMA通道的DMA缓存的大小
     DMA_Cmd(DMA_CHx, ENABLE);  //使能SPI RX DMA1 所指示的通道 
}    
六、SPI发送接收(DMA模式)
void SPI_DMA_WriteReadByte(void)
{
    GPIO_ResetBits(GPIOA, GPIO_Pin_15);//拉低片选       (放在此处为了节省0.5us的时间)
    SPI_I2S_DMACmd(SPI1,SPI_I2S_DMAReq_Tx, ENABLE);//SPI 发送DMA使能
    SPI_I2S_DMACmd(SPI1,SPI_I2S_DMAReq_Rx, ENABLE);//SPI 接收DMA使能
    MYDMA_TX_Enable(DMA1_Channel3);     //发送
    MYDMA_RX_Enable(DMA1_Channel2);//接收
    if(DMA_GetFlagStatus(DMA1_FLAG_TC3) == RESET)
    {
        DMA_ClearFlag(DMA1_FLAG_TC3);
    }                   
    while(SPI_I2S_GetFlagStatus(SPI1,SPI_I2S_FLAG_TXE) == RESET);   
    while(SPI_I2S_GetFlagStatus(SPI1,SPI_I2S_FLAG_BSY) == 1);   //保证发送接收数据完整
    GPIO_SetBits(GPIOA, GPIO_Pin_15);//拉低片选
}

1.祝融号上火星! 祝融号如何与地球通信呢?

2.一名合格电子工程师,不能避开的“坑”

3.芯片短缺,如何快速上手并替换一款MCU

4.Segger Embedded Studio,试试这个新嵌入式编译器环境!

5.嵌入式项目中使用开源软件需要注意哪些问题??

6.特斯拉突然加速与刹车失灵的可能原因探讨!

免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。


嵌入式资讯精选 掌握最鲜资讯,尽领行业新风
评论
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 63浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 40浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 83浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 167浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 113浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 103浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 66浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 98浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦