通用RF器件的邻道泄漏比(ACLR)来源

电子万花筒 2021-05-21 07:53
电子万花筒平台核心服务

 中国最活跃的射频微波天线雷达微信技术群

电子猎头:帮助电子工程师实现人生价值! 

电子元器件:价格比您现有供应商最少降低10%

射频微波天线新产品新技术发布平台:让更多优秀的国产射频微波产品得到最好的宣传!发布产品欢迎联系管理,专刊发布!强力曝光!



通用RF器件的邻道泄漏比(ACLR)来源

 

摘要:任何通用的RF器件,不论是混频器、放大器、隔离器或其它器件,其邻道泄漏比(ACLR)都受器件三阶互调失真(IM3)的影响。可推导出器件的IM3与三阶输出交调截点(OIP3)之间的关系。本文介绍了估算ACLR的公式推导,ACLR是IM3的函数。 

ACLR/IMD模型

为了了解RF器件的ACLR来源可以对宽带载波频谱进行模拟,相当于独立的CW副载波集合。每个副载波都会携带一部分总的载波功率。下图所示就是这样一个模型,连续RF载波由四个单独的CW副载波模拟,每个副载波的功率为总载波功率的四分之一。副载波以相同的间隔均匀地分布于整个载波带宽内。

图1. 宽带载波信号的副载波模型
图1中的绿线从左到右分别是副载波1、2、3和4。如果我们只考察左边的两个副载波(1和2),可以考虑RF器件中的任意IMD3失真引起的三阶IMD分量。三阶失真表现为这两个副载波两侧的低电平副载波,两个“绿色”副载波左边的第一个“红色”失真分量是这两个副载波的IMD3失真结果。
来自副载波1和3的IMD3分量在与载波1间距相同的频率处具有IMD3失真分量。这在载波频谱的左边产生第二个“红色” IM分量。同样,来自副载波1和4的IMD3生成的失真分量距离载波边缘更远。
注意这里还存在其它的IMD分量。副载波2和4产生的IM3分量直接叠加在副载波1和2产生的IMD分量上。这一累加效应会使距离RF载波边缘较近的IMD分量的幅值比距离RF载波边缘较远的IMD分量高,产生ACLR失真频谱中的“肩”特性。Leffel¹发表的一篇论文详细描述了来自多个副载波的IMD分量的这种累加。
这种方法可以定量地预测单独的IMD3失真分量的实际电平。通过增加模型中所使用的单独的副载波的数量可以增加模型的精度²。多个宽带载波的ACLR性能与该模型中的ACLR非常像,模型中每个单独的宽带载波占据总的宽带载波带宽的一部分。在宽带载波的相邻部分,邻近最后一个载波的单载波的ACLR处于IMD3引起的失真响应的高肩位置。这导致多载波情形的ACLR比单载波系统的ACLR差得多。再次说明,这一结果可以量化后用以精确预测单宽带载波或多宽带载波的ACLR性能。这种基本方法只通过OIP3参数来预测RF器件的ACLR性能。

基本关系

器件的三阶互调分量和三阶交调截点之间的关系如下所示:
IMD3 = (3 x Pm) - (2 x OIP3)

其中,
Pm = 双音测试例子中的每个单音功率
IMD3 = 三阶IM3,以dBm为单位,表示绝对功率
OIP3 = 三阶交调截点,表示绝对功率
为了方便,可将该公式重写为相对IMD3,即与功率电平(P)有关的IM3性能。
IMD3 = 2 x (Pm - OIP3)
其中,

P
m = 双音测试例子中的每个单音功率
IMD3 = 三阶IM3,以dBc为单位,表示相对功率
OIP3 = 三阶交调截点,表示绝对功率

例1

以总输出功率(Ptot)为+30dBm,OIP3为+45dBm的功率放大器(PA)为例。这样一个PA的相对IMD3可利用上述公式推导得出。但是,IM3双音测试中每个单音的输出功率比PA的总输出功率低3dB,即每个单音+27dBm。所以利用这些值来计算该PA的IMD3:

P
tot = +30dBm (PA的总输出功率)
P
m = (+30dBm - 3dB) = +27dBm每个单音
OIP3 = +45dBm

IMD3 = 2 x (27 - 45) = -36dBc

ACLR与IMD3的关系

宽带载波的ACLR通过一个校正因数与双音IMD3性能相关。该校正的存在是由于IMD3性能造成了ACLR性能恶化。这种恶化来源于由扩频载波的频谱密度组成的各种互调分量的影响。ACLR与IMD3的有效关系如下所示:
ACLRn = IMD3 + Cn
其中Cn如下表所示:

No. of Carriers

1

2

3

4

9

Correction Cn (dB)

+3

+9

+11

+12

+13

我们可以将IMD3和ACLRn的上述关系式合并为一个统一的表达式,由RF器件的基本性能参数来推导多个扩频载波的ACLR。
ACLRn = (2 x [(P - 3) - (OIP3)]) + (Cn)
其中,

P
tot = 所有载波的总输出功率,以dBm为单位
OIP3 = 器件的OIP3,以dBm为单位
ACLRn = "n" 载波的ACLR , 以dBc为单位
Cn = 上述表中的值

例2

重复上述例子,现假设功率放大器必须产生四个载波,功率均为250mW,总输出功率为1W。

P/
载波 = +24dBm
P
tot = +30dBm,总功率
OIP3 = +45dBm

ACLR
n = 2 x ((30 - 3) - (45)) + 12
ACLR
n = -36dBc + 12dB
ACLR
n = -24dBc

重新整理该公式可推导出要得到期望的ACLR所需的OIP3。重新改写后的公式如下:
OIP3 = 0.5 x ([2 x (P - 3)] - [ACLRn] + [Cn])
其中,

P = 
所有载波的总输出功率,以dBm为单位 
OIP3 = 器件的OIP3,以dBm为单位

ACLRn = "n" 载波的ACLR , 以dBc为单位
Cn = 上述表中的值

例3

重复上述例子,现假设该功率放大器的四载波ACLR期望值是-50dBc。

P/
载波 = +24dBm
P
tot = +30dBm,总功率
ACLRn = -50dBc

OIP3 = 0.5 x ([2 x (30 - 3)] - [-45] + [12])
OIP3 = +55.5dBm

结论

通用RF器件的载波功率电平、OIP3指标和单载波/多载波ACLR性能之间的关系已推导得出。该关系适用于性能受三阶失真分量影响的RF器件。包括许多通用的RF器件,但是驱动不能太接近饱和电平。通过观察,该模型对ACLR的预测精度接近±2dB。

参考文献

  1. Michael     Leffel, "Intermodulation Distortion in a Multi-signal     Environment," RF Design Magazine, June 1995, pp. 78-84.

  2. Nuno Borges     Carvalho and Jose Carlos Pedro, "Compact Formulas to Relate ACPR and     NPR to Two-Tone IMR and IPE," Microwave Journal, December     1999, pp. 70-84.

 

欢迎射频微波雷达通信工程师关注公众号



中国最纯粹的射频微波雷达通信工程师微信技术群,欢迎您的加入,来这里一起交流和讨论技术吧!进群记得备注方向和公司名称哦,我们将邀请您进细分群!

用手指按住就可以加入微信技术群哦!



电子万花筒平台自营:Xilinx ALTERA ADI TI ST NXP 镁光 三星 海力士内存芯片 等百余品牌的电子元器件,可接受BOM清单,缺料,冷门,停产,以及国外对华禁运器件业务!


欢迎大家有需求随时发型号清单,我们将在第一时间给您呈上最好的报价,微信(QQ同号):1051197468 也希望您把我们的微信推荐给采购同事,感谢对平台的支持与信任!


与我们合作,您的器件采购成本将相比原有供应商降低10%以上!!不信?那您就来试试吧!!欢迎来撩!!



电子万花筒 电子万花筒,每个电子工程师都在关注的综合型技术与行业服务平台!
评论
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 80浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 100浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 107浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 71浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 85浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 89浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 121浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 51浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 31浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 91浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦