近日,暨南大学信息科学技术学院唐群委教授课题组在ACS Nano (IF=14.588)上发表题为“Nodding Duck Structure Multi-track Directional Freestanding Triboelectric Nanogenerator toward Low-Frequency Ocean Wave Energy Harvesting”的研究论文,暨南大学为第一通讯单位,刘利强博士为第一作者,暨南大学杨希娅副教授和唐群委教授为共同通讯作者。
发展海洋能量转换技术是优化海洋能源结构、拓宽“蓝色经济”领域的战略要求,摩擦纳米发电机(TENG)以其独特的优势为高效捕获波浪能提供了一种潜在的方法。近年来,TENG的结构设计逐渐从液-固接触式转变为基于独立层滑动模式的球形结构,因为球形结构易于漂浮在海面上,能够捕获多向波。然而,球形结构的TENG将不可避免地遇到与波浪同时运动而不受约束的情况,这将严重影响波浪能转换效率。因此,TENG内部结构设计的关键问题不仅要充分利用内部空间进行波浪能采集,而且要最大限度地提高波浪能向TENG动能的转化效率。
该项目报道了一种用于低频波浪能采集的多轨道独立层式摩擦纳米发电机(NDM-FTENG),系统研究和优化了轨道数、连接方式、振荡频率和振荡幅度等结构参数对NDM-FTENG电学输出性能的影响。在波浪振荡频率为0.21 Hz和摆幅为120°的条件下,单个NDM-FTENG测得最大开路电压为507 V,可获得4 W/m³的最大瞬时功率密度,同时点亮320个LED灯。NDM-FTENG使用约两个月后电学输出性能基本没有衰减,具有良好的稳定性和耐用性。NDM-FTENG被证明是在真实的波浪环境中驱动小型电子器件的有效装置,并且通过将更多的NDM-FTENG装置并联在一起,形成一个面向大规模蓝色能源收集的网络,拥有进一步增大波浪能发电功率的巨大潜力。
据悉,项目得到了国家自然科学基金,广东省自然科学基金,广东省基础和应用基础研究基金,中央高校基本科研项目和中国博士后科学基金的资助。近年来,唐群委和杨希娅等教师组成的科研团队,围绕高性能驻极体制备、混合效应能量采集、摩擦电荷密度提升等关键问题,致力于人体动能、波浪能等低频机械能转换材料与器件的研发,获得了一系列创新性研究成果。
论文链接:
https://pubs.acs.org/doi/full/10.1021/acsnano.1c00345
延伸阅读:
《基于摩擦电的能量收集和传感(TENG)-2020版》
《从微瓦到吉瓦的能量收集技术及市场机遇-2020版》
《电子设备的能量收集技术-2020版》
《热电能量收集与传感-2019版》