搭建qemu RISC-V运行Linux环境~

嵌入式资讯精选 2021-05-14 11:38

搭建qemu RISC-V运行Linux环境

  • 1.本文概述

  • 2.工具介绍

    • 2.1 riscv-gnu-toolchain

    • 2.2 spike

    • 2.3 RISC-V Porxy Kernel

    • 2.4 编译工具

  • 3.编译Linux Kernel

  • 4.编译busybox

  • 5.制作根文件系统

  • 6.编译安装qemu

  • 7.启动基本Linux程序

  • 8.运行发行版本OS(fedora&ubuntu)

    • 8.1 下载安装fedora镜像

    • 8.2 下载安装ubuntu镜像

  • 9.总结

1.本文概述

目前虽然RISC-V的硬件开发板能够运行Linux的十分难得,从探索RISCV的生态的角度上来看,使用模拟器也是一种非常好的方式。使用QEMU能够很好的模拟RISCV的硬件资源,后期有实际的开发板后将其软件生态移植上去也并不复杂。

本文将演示QEMU上建立RISCV的环境,以及如何交叉编译Linux,通过文章的描述,可以掌握RISC-V上的Linux的编译开发流程,文章也展示了在riscv64架构上运行fedora和ubuntu两个Linux发行版本的过程。

2.工具介绍

在进行环境搭建之前,首先先来介绍一些目前开源的比较热门的RISCV工具项目。

2.1 riscv-gnu-toolchain

RISCV的GNU工具链,是编译RISC-V程序的交叉编译工具链。

https://github.com/riscv/riscv-gnu-toolchain

主要有两个版本:

  • riscv64-­unknown-­elf-gcc是使用newlib,主要用于静态编译的独立的程序或者单机嵌入式程序,RTOS等等。
  • riscv64-unknown-­linux-­gnu-­gcc使用的glibc,可以编译动态链接程序,例如大型操作系统如Linux等等。

如果编译选项加上-nostartfiles -nostdlib -nostdinc,两个编译版本一致

2.2 spike

spike是一个开源的RISC-V的指令模拟器,实现了一个和多个RISC-V harts的功能,提供了丰富的系统仿真,其名称来自于Golden Spike,是第一条横贯美国大陆的铁路。

https://github.com/riscv/riscv-isa-sim

在RISC-V架构指令集扩展层面有着非常好的实现。

2.3 RISC-V Porxy Kernel

RISC-V Proxy Kernel and Boot Loader,简称RISCV-PK,是一个轻量级的应用程序的可执行环境,可以加载静态的RISCV ELF的可执行文件。主要两个功能,代理和引导启动,可以作为引导启动RISC-V的Linux的环境。

https://github.com/riscv/riscv-pk

2.4 编译工具

如果要一次性部署这些工具,可以通过下面的仓库进行操作

https://github.com/riscv/riscv-tools

在此之前,首先安装必要的程序,本次使用的环境为Ubuntu20.04。

sudo apt install autoconf automake autotools-dev curl libmpc-dev libmpfr-dev libgmp-dev libusb-1.0-0-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zlib1g-dev device-tree-compiler pkg-config libexpat-dev libncurses5-dev libncursesw5-dev

当安装好必要的程序后,可以clone仓库。

git clone https://github.com/riscv/riscv-tools.git
git submodule update --init --recursive
export RISCV=~/riscv
./build.sh

可能会遇到如下的错误:

要解决这个问题,首先需要安装下载riscv64的交叉编译工具链。

git clone https://github.com/riscv/riscv-gnu-toolchain
./configure --prefix=$RISCV

其中配置项目--enable-multilib表示编译32bit和64bit的gcc,支持,这里不选择,只编译32bit的交叉编译工具链。

经过测试最高版本的gcc交叉编译工具链,编译riscv-tools会出现异常,所以替换成低一点的版本。

riscv-gnu-toolchain/riscv-gcc
git checkout riscv-gcc-8.2.0

紧接着开始编译

make -j $(nproc)

表示编译baremate版本的嵌入式交叉编译环境。

make -j $(nproc) linux

编译Linux版本的交叉编译环境。

编译完成后,可以看到编译好的程序。

ls ~/riscv/bin

然后,返回去编译riscv-tools

最后导出环境变量

export PATH=/home/bigmagic/riscv/bin:$PATH

3.编译Linux Kernel

在编译Linux Kernel之前,需要安装相关的工具。

sudo apt install libncurses5-dev libncursesw5-dev

下载编译Linux Kernel

git clone https://github.com/torvalds/linux.git
cd linux
git checkout v5.10
make ARCH=riscv CROSS_COMPILE=riscv64-unknown-linux-gnu- defconfig
make ARCH=riscv CROSS_COMPILE=riscv64-unknown-linux-gnu- -j $(nproc)

编译完成后,最后生成的Kernel文件在linux/arch/riscv/boot/Image

4.编译busybox

可以用busybox制作生成根文件系统,同时也提供了Linux下运行的一些基本程序与控制台。

git clone https://git.busybox.net/busybox
cd busybox
git checkout 1_32_1
CROSS_COMPILE=riscv64-unknown-linux-gnu- make defconfig
CROSS_COMPILE=riscv64-unknown-linux-gnu- make menuconfig

需要选择静态link。

选择静态link

然后开始编译

CROSS_COMPILE=riscv64-unknown-linux-gnu- make -j $(nproc)

5.制作根文件系统

下面来制作一个空的磁盘,格式为ext2的文件系统。

dd if=/dev/zero of=root.bin bs=1M count=64
mkfs.ext2 -F root.bin

这样就制作了一个空的,名称为root.bin文件格式为ext2的文件系统。

接着只需要将busybox的程序加载进去即可。

mkdir mnt
sudo mount -o loop root.bin mnt
cd mnt 
sudo mkdir -p bin etc dev lib proc sbin tmp usr usr/bin usr/lib usr/sbin
sudo cp ~/busybox/busybox bin
sudo ln -s ../bin/busybox sbin/init
sudo ln -s ../bin/busybox bin/sh
cd ..
sudo umount mnt

制作好的根文件系统目录结构如下:

如果要创建更加功能完善的Linux的根文件系统,这里可以采用buildroot或者Yocto来进行创建。

6.编译安装qemu

可以直接安装

sudo apt install qemu-system-misc

或者自己编译

编译之前需要安装如下的库:

sudo apt-get install -y git build-essential pkg-config zlib1g-dev libglib2.0-0 libglib2.0-dev libsdl1.2-dev libpixman-1-dev libfdt-dev autoconf automake libtool librbd-dev libaio-dev flex bison make

因为要运行qemu

git clone git@github.com:qemu/qemu.git
cd qemu
git checkout v6.0.0
mkdir build
cd build
../configure --prefix=/home/bigmagic/riscv/qemu --target-list=riscv32-
softmmu,riscv64-softmmu --enable-debug-tcg --enable-debug --enable-debug-info && make -j8 && make install

其中--prefix=后面的路径是需要填写自己的路径。

最后添加环境变量到自己的路径。

export PATH=/home/bigmagic/riscv/qemu/bin/:$PATH

7.启动基本Linux程序

事先准备好编译完成的root.bin程序以及Linux的Image

qemu-system-riscv64 -nographic -machine virt -kernel linux/arch/riscv/boot/Image -append "root=/dev/vda rw console=ttyS0" -drive file=rootfs/root.bin,format=raw,id=hd0 -device virtio-blk-device,drive=hd0

此时可以看到Linux正常的启动。

第一阶段是OpenSBI,后面一个阶段才是

Linux启动后,无法正常输入命令,需要输入

/bin/busybox --install -s

可以看到RISCV64 的 Linux正常的运行起来了。

8.运行发行版本OS(fedora&ubuntu)

根据之前的描述,如果在buildroot中选择了qemu_riscv64_virt_defconfig,那么最后生成的可执行脚本如下

qemu-system-riscv64 -nographic -machine virt -kernel output/images/Image \
                    -append "root=/dev/vda rw console=ttyS0"             \
                    -drive file=output/images/rootfs.ext2,format=raw,id=hd0\
                    -device virtio-blk-device,drive=hd0

上述的脚本可以作为基本的参考。如果要运行fedora,那么可以按照下面的流程进行。

首先安装virt-builder,可以快速构建虚拟机环境。

sudo apt install libguestfs-tools

接下来可以添加fedora的仓库。

mkdir -p ~/.config/virt-builder/repos.d/
cat <<EOF > ~/.config/virt-builder/repos.d/fedora-riscv.conf
[fedora-riscv]
uri=https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/index
EOF

通过列出riscv64支持的发行版镜像

8.1 下载安装fedora镜像

下载fedora镜像,所有的镜像可以在下列的网站中找到

https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/

此时构建一个20200108版本的镜像。

wget https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/Fedora-Developer-Rawhide-20200108.n.0-sda.raw.xz

下载完成后,解压文件

unxz -k Fedora-Developer-Rawhide-20200108.n.0-sda.raw.xz

接着下载启动文件

wget https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/Fedora-Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-smode.elf

执行的脚本如下

export VER=20200108.n.0
qemu-system-riscv64 -machine virt \
                    -nographic \
                    -smp 4 \
                    -m 8G \
                    -bios Fedora-Developer-Rawhide-${VER}-fw_payload-uboot-qemu-virt-smode.elf \
                    -object rng-random,filename=/dev/urandom,id=rng0 \
                    -device virtio-rng-device,rng=rng0 \
                    -device virtio-blk-device,drive=hd0 \
                    -drive file=Fedora-Developer-Rawhide-${VER}-sda.raw,format=raw,id=hd0 \
                    -device virtio-net-device,netdev=usernet \
                    -netdev user,id=usernet,hostfwd=tcp::3333-:22

正常情况下,启动信息如下:

下面也列出了用户名

login:     riscv
password:  fedora_rocks!

进入环境后可以正常使用镜像。

使用python

这样就可以在RISCV的架构上开发应用程序了。

8.2 下载安装ubuntu镜像

安装需要的工具

sudo apt install qemu-system-misc opensbi u-boot-qemu qemu-utils

到ubuntu官网上看到可以下载的镜像

http://ubuntutym2.u-toyama.ac.jp/ubuntu-dvd/20.04/release/

下载地址如下:

wget http://ubuntutym2.u-toyama.ac.jp/ubuntu-dvd/20.04/release/ubuntu-20.04.2-preinstalled-server-riscv64.img.xz

然后解压

xz -dk ubuntu-20.04.2-preinstalled-server-riscv64.img.xz

最后可以运行ubuntu的脚本

qemu-system-riscv64 \
-machine virt -nographic -m 2048 -smp 4 \
-bios /usr/lib/riscv64-linux-gnu/opensbi/generic/fw_jump.elf \
-kernel /usr/lib/u-boot/qemu-riscv64_smode/uboot.elf \
-device virtio-net-device,netdev=eth0 -netdev user,id=eth0 \
-drive file=ubuntu-20.04.2-preinstalled-server-riscv64.img,format=raw,if=virtio

执行的现象如下:

登录用户名,密码

username:ubuntu
password:ubuntu

然后修改新的密码,最后可以正常进入ubuntu。

9.总结

本文从头介绍了一个riscv64上运行完整Linux的流程,也完成fedora&ubuntu两个发行版本的RISC-V环境搭建。

越来越多的RISCV的发新版本的适配,也充分展示了RISCV架构生态的繁荣。

目前越来越多的发新版OS开始慢慢适配RISCV,但是由于硬件资源和开发板的稀缺,导致很多软件生态不能实际的构建,此时可以通过qemu来进行实验。

开发板的出现只是迟早的,目前D1开发板对标树莓派,想必出来后也可以运行Linux的发行版,后期可以将其适配到各种Linux的发行版本上,在其进行软件生态建设也是一个不错的平台。

1.傻瓜式教程:如何使用“多合一”开发工具STM32CubeIDE

2.单片机6年想转嵌入式Linux ,不知如何下手?

3.80家MCU国产和国外厂家汇总

4.对比STM32和GD32固件库,你会发现其中的秘密!

5.你的单片机裸机程序框架是怎样的?

6.大神Jim Keller背书!RISC-V进军AI和汽车芯片领域!

免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。

嵌入式资讯精选 掌握最鲜资讯,尽领行业新风
评论
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 102浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 87浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 95浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 92浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 195浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 140浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 56浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 111浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 115浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 120浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 155浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 160浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 55浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 214浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 48浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦