搭建qemu RISC-V运行Linux环境~

嵌入式资讯精选 2021-05-14 11:38

搭建qemu RISC-V运行Linux环境

  • 1.本文概述

  • 2.工具介绍

    • 2.1 riscv-gnu-toolchain

    • 2.2 spike

    • 2.3 RISC-V Porxy Kernel

    • 2.4 编译工具

  • 3.编译Linux Kernel

  • 4.编译busybox

  • 5.制作根文件系统

  • 6.编译安装qemu

  • 7.启动基本Linux程序

  • 8.运行发行版本OS(fedora&ubuntu)

    • 8.1 下载安装fedora镜像

    • 8.2 下载安装ubuntu镜像

  • 9.总结

1.本文概述

目前虽然RISC-V的硬件开发板能够运行Linux的十分难得,从探索RISCV的生态的角度上来看,使用模拟器也是一种非常好的方式。使用QEMU能够很好的模拟RISCV的硬件资源,后期有实际的开发板后将其软件生态移植上去也并不复杂。

本文将演示QEMU上建立RISCV的环境,以及如何交叉编译Linux,通过文章的描述,可以掌握RISC-V上的Linux的编译开发流程,文章也展示了在riscv64架构上运行fedora和ubuntu两个Linux发行版本的过程。

2.工具介绍

在进行环境搭建之前,首先先来介绍一些目前开源的比较热门的RISCV工具项目。

2.1 riscv-gnu-toolchain

RISCV的GNU工具链,是编译RISC-V程序的交叉编译工具链。

https://github.com/riscv/riscv-gnu-toolchain

主要有两个版本:

  • riscv64-­unknown-­elf-gcc是使用newlib,主要用于静态编译的独立的程序或者单机嵌入式程序,RTOS等等。
  • riscv64-unknown-­linux-­gnu-­gcc使用的glibc,可以编译动态链接程序,例如大型操作系统如Linux等等。

如果编译选项加上-nostartfiles -nostdlib -nostdinc,两个编译版本一致

2.2 spike

spike是一个开源的RISC-V的指令模拟器,实现了一个和多个RISC-V harts的功能,提供了丰富的系统仿真,其名称来自于Golden Spike,是第一条横贯美国大陆的铁路。

https://github.com/riscv/riscv-isa-sim

在RISC-V架构指令集扩展层面有着非常好的实现。

2.3 RISC-V Porxy Kernel

RISC-V Proxy Kernel and Boot Loader,简称RISCV-PK,是一个轻量级的应用程序的可执行环境,可以加载静态的RISCV ELF的可执行文件。主要两个功能,代理和引导启动,可以作为引导启动RISC-V的Linux的环境。

https://github.com/riscv/riscv-pk

2.4 编译工具

如果要一次性部署这些工具,可以通过下面的仓库进行操作

https://github.com/riscv/riscv-tools

在此之前,首先安装必要的程序,本次使用的环境为Ubuntu20.04。

sudo apt install autoconf automake autotools-dev curl libmpc-dev libmpfr-dev libgmp-dev libusb-1.0-0-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zlib1g-dev device-tree-compiler pkg-config libexpat-dev libncurses5-dev libncursesw5-dev

当安装好必要的程序后,可以clone仓库。

git clone https://github.com/riscv/riscv-tools.git
git submodule update --init --recursive
export RISCV=~/riscv
./build.sh

可能会遇到如下的错误:

要解决这个问题,首先需要安装下载riscv64的交叉编译工具链。

git clone https://github.com/riscv/riscv-gnu-toolchain
./configure --prefix=$RISCV

其中配置项目--enable-multilib表示编译32bit和64bit的gcc,支持,这里不选择,只编译32bit的交叉编译工具链。

经过测试最高版本的gcc交叉编译工具链,编译riscv-tools会出现异常,所以替换成低一点的版本。

riscv-gnu-toolchain/riscv-gcc
git checkout riscv-gcc-8.2.0

紧接着开始编译

make -j $(nproc)

表示编译baremate版本的嵌入式交叉编译环境。

make -j $(nproc) linux

编译Linux版本的交叉编译环境。

编译完成后,可以看到编译好的程序。

ls ~/riscv/bin

然后,返回去编译riscv-tools

最后导出环境变量

export PATH=/home/bigmagic/riscv/bin:$PATH

3.编译Linux Kernel

在编译Linux Kernel之前,需要安装相关的工具。

sudo apt install libncurses5-dev libncursesw5-dev

下载编译Linux Kernel

git clone https://github.com/torvalds/linux.git
cd linux
git checkout v5.10
make ARCH=riscv CROSS_COMPILE=riscv64-unknown-linux-gnu- defconfig
make ARCH=riscv CROSS_COMPILE=riscv64-unknown-linux-gnu- -j $(nproc)

编译完成后,最后生成的Kernel文件在linux/arch/riscv/boot/Image

4.编译busybox

可以用busybox制作生成根文件系统,同时也提供了Linux下运行的一些基本程序与控制台。

git clone https://git.busybox.net/busybox
cd busybox
git checkout 1_32_1
CROSS_COMPILE=riscv64-unknown-linux-gnu- make defconfig
CROSS_COMPILE=riscv64-unknown-linux-gnu- make menuconfig

需要选择静态link。

选择静态link

然后开始编译

CROSS_COMPILE=riscv64-unknown-linux-gnu- make -j $(nproc)

5.制作根文件系统

下面来制作一个空的磁盘,格式为ext2的文件系统。

dd if=/dev/zero of=root.bin bs=1M count=64
mkfs.ext2 -F root.bin

这样就制作了一个空的,名称为root.bin文件格式为ext2的文件系统。

接着只需要将busybox的程序加载进去即可。

mkdir mnt
sudo mount -o loop root.bin mnt
cd mnt 
sudo mkdir -p bin etc dev lib proc sbin tmp usr usr/bin usr/lib usr/sbin
sudo cp ~/busybox/busybox bin
sudo ln -s ../bin/busybox sbin/init
sudo ln -s ../bin/busybox bin/sh
cd ..
sudo umount mnt

制作好的根文件系统目录结构如下:

如果要创建更加功能完善的Linux的根文件系统,这里可以采用buildroot或者Yocto来进行创建。

6.编译安装qemu

可以直接安装

sudo apt install qemu-system-misc

或者自己编译

编译之前需要安装如下的库:

sudo apt-get install -y git build-essential pkg-config zlib1g-dev libglib2.0-0 libglib2.0-dev libsdl1.2-dev libpixman-1-dev libfdt-dev autoconf automake libtool librbd-dev libaio-dev flex bison make

因为要运行qemu

git clone git@github.com:qemu/qemu.git
cd qemu
git checkout v6.0.0
mkdir build
cd build
../configure --prefix=/home/bigmagic/riscv/qemu --target-list=riscv32-
softmmu,riscv64-softmmu --enable-debug-tcg --enable-debug --enable-debug-info && make -j8 && make install

其中--prefix=后面的路径是需要填写自己的路径。

最后添加环境变量到自己的路径。

export PATH=/home/bigmagic/riscv/qemu/bin/:$PATH

7.启动基本Linux程序

事先准备好编译完成的root.bin程序以及Linux的Image

qemu-system-riscv64 -nographic -machine virt -kernel linux/arch/riscv/boot/Image -append "root=/dev/vda rw console=ttyS0" -drive file=rootfs/root.bin,format=raw,id=hd0 -device virtio-blk-device,drive=hd0

此时可以看到Linux正常的启动。

第一阶段是OpenSBI,后面一个阶段才是

Linux启动后,无法正常输入命令,需要输入

/bin/busybox --install -s

可以看到RISCV64 的 Linux正常的运行起来了。

8.运行发行版本OS(fedora&ubuntu)

根据之前的描述,如果在buildroot中选择了qemu_riscv64_virt_defconfig,那么最后生成的可执行脚本如下

qemu-system-riscv64 -nographic -machine virt -kernel output/images/Image \
                    -append "root=/dev/vda rw console=ttyS0"             \
                    -drive file=output/images/rootfs.ext2,format=raw,id=hd0\
                    -device virtio-blk-device,drive=hd0

上述的脚本可以作为基本的参考。如果要运行fedora,那么可以按照下面的流程进行。

首先安装virt-builder,可以快速构建虚拟机环境。

sudo apt install libguestfs-tools

接下来可以添加fedora的仓库。

mkdir -p ~/.config/virt-builder/repos.d/
cat <<EOF > ~/.config/virt-builder/repos.d/fedora-riscv.conf
[fedora-riscv]
uri=https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/index
EOF

通过列出riscv64支持的发行版镜像

8.1 下载安装fedora镜像

下载fedora镜像,所有的镜像可以在下列的网站中找到

https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/

此时构建一个20200108版本的镜像。

wget https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/Fedora-Developer-Rawhide-20200108.n.0-sda.raw.xz

下载完成后,解压文件

unxz -k Fedora-Developer-Rawhide-20200108.n.0-sda.raw.xz

接着下载启动文件

wget https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/Fedora-Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-smode.elf

执行的脚本如下

export VER=20200108.n.0
qemu-system-riscv64 -machine virt \
                    -nographic \
                    -smp 4 \
                    -m 8G \
                    -bios Fedora-Developer-Rawhide-${VER}-fw_payload-uboot-qemu-virt-smode.elf \
                    -object rng-random,filename=/dev/urandom,id=rng0 \
                    -device virtio-rng-device,rng=rng0 \
                    -device virtio-blk-device,drive=hd0 \
                    -drive file=Fedora-Developer-Rawhide-${VER}-sda.raw,format=raw,id=hd0 \
                    -device virtio-net-device,netdev=usernet \
                    -netdev user,id=usernet,hostfwd=tcp::3333-:22

正常情况下,启动信息如下:

下面也列出了用户名

login:     riscv
password:  fedora_rocks!

进入环境后可以正常使用镜像。

使用python

这样就可以在RISCV的架构上开发应用程序了。

8.2 下载安装ubuntu镜像

安装需要的工具

sudo apt install qemu-system-misc opensbi u-boot-qemu qemu-utils

到ubuntu官网上看到可以下载的镜像

http://ubuntutym2.u-toyama.ac.jp/ubuntu-dvd/20.04/release/

下载地址如下:

wget http://ubuntutym2.u-toyama.ac.jp/ubuntu-dvd/20.04/release/ubuntu-20.04.2-preinstalled-server-riscv64.img.xz

然后解压

xz -dk ubuntu-20.04.2-preinstalled-server-riscv64.img.xz

最后可以运行ubuntu的脚本

qemu-system-riscv64 \
-machine virt -nographic -m 2048 -smp 4 \
-bios /usr/lib/riscv64-linux-gnu/opensbi/generic/fw_jump.elf \
-kernel /usr/lib/u-boot/qemu-riscv64_smode/uboot.elf \
-device virtio-net-device,netdev=eth0 -netdev user,id=eth0 \
-drive file=ubuntu-20.04.2-preinstalled-server-riscv64.img,format=raw,if=virtio

执行的现象如下:

登录用户名,密码

username:ubuntu
password:ubuntu

然后修改新的密码,最后可以正常进入ubuntu。

9.总结

本文从头介绍了一个riscv64上运行完整Linux的流程,也完成fedora&ubuntu两个发行版本的RISC-V环境搭建。

越来越多的RISCV的发新版本的适配,也充分展示了RISCV架构生态的繁荣。

目前越来越多的发新版OS开始慢慢适配RISCV,但是由于硬件资源和开发板的稀缺,导致很多软件生态不能实际的构建,此时可以通过qemu来进行实验。

开发板的出现只是迟早的,目前D1开发板对标树莓派,想必出来后也可以运行Linux的发行版,后期可以将其适配到各种Linux的发行版本上,在其进行软件生态建设也是一个不错的平台。

1.傻瓜式教程:如何使用“多合一”开发工具STM32CubeIDE

2.单片机6年想转嵌入式Linux ,不知如何下手?

3.80家MCU国产和国外厂家汇总

4.对比STM32和GD32固件库,你会发现其中的秘密!

5.你的单片机裸机程序框架是怎样的?

6.大神Jim Keller背书!RISC-V进军AI和汽车芯片领域!

免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。

嵌入式资讯精选 掌握最鲜资讯,尽领行业新风
评论 (0)
  • 曾经听过一个“隐形经理”的故事:有家公司,新人进来后,会惊讶地发现老板几乎从不在办公室。可大家依旧各司其职,还能在关键时刻自发协作,把项目完成得滴水不漏。新员工起初以为老板是“放羊式”管理,结果去茶水间和老员工聊过才发现,这位看似“隐形”的管理者其实“无处不在”,他提前铺好了企业文化、制度和激励机制,让一切运行自如。我的观点很简单:管理者的最高境界就是——“无为而治”。也就是说,你的存在感不需要每天都凸显,但你的思路、愿景、机制早已渗透到组织血液里。为什么呢?因为真正高明的管理,不在于事必躬亲,
    优思学院 2025-03-12 18:24 120浏览
  • 一、行业背景与用户需求随着健康消费升级,智能眼部按摩仪逐渐成为缓解眼疲劳、改善睡眠的热门产品。用户对这类设备的需求不再局限于基础按摩功能,而是追求更智能化、人性化的体验,例如:语音交互:实时反馈按摩模式、操作提示、安全提醒。环境感知:通过传感器检测佩戴状态、温度、压力等,提升安全性与舒适度。低功耗长续航:适应便携场景,延长设备使用时间。高性价比方案:在控制成本的同时实现功能多样化。针对这些需求,WTV380-8S语音芯片凭借其高性能、多传感器扩展能力及超高性价比,成为眼部按摩仪智能化升级的理想选
    广州唯创电子 2025-03-13 09:26 120浏览
  • 北京时间3月11日,国内领先的二手消费电子产品交易和服务平台万物新生(爱回收)集团(纽交所股票代码:RERE)发布2024财年第四季度和全年业绩报告。财报显示,2024年第四季度万物新生集团总收入48.5亿元,超出业绩指引,同比增长25.2%。单季non-GAAP经营利润1.3亿元(non-GAAP口径,即经调整口径,均不含员工股权激励费用、无形资产摊销及因收购产生的递延成本,下同),并汇报创历史新高的GAAP净利润7742万元,同比增长近27倍。总览全年,万物新生总收入同比增长25.9%达到1
    华尔街科技眼 2025-03-13 12:23 150浏览
  • 在追求更快、更稳的无线通信路上,传统射频架构深陷带宽-功耗-成本的“不可能三角”:带宽每翻倍,系统复杂度与功耗增幅远超线性增长。传统方案通过“分立式功放+多级变频链路+JESD204B 接口”的组合试图平衡性能与成本,却难以满足实时性严苛的超大规模 MIMO 通信等场景需求。在此背景下,AXW49 射频开发板以“直采+异构”重构射频范式:基于 AMD Zynq UltraScale+™ RFSoC Gen3XCZU49DR 芯片的 16 通道 14 位 2.5GSPS ADC 与 16
    ALINX 2025-03-13 09:27 130浏览
  • 引言汽车行业正经历一场巨变。随着电动汽车、高级驾驶辅助系统(ADAS)和自动驾驶技术的普及,电子元件面临的要求从未如此严格。在这些复杂系统的核心,存在着一个看似简单却至关重要的元件——精密电阻。贞光科技代理品牌光颉科技的电阻选型过程,特别是在精度要求高达 0.01% 的薄膜和厚膜技术之间的选择,已成为全球汽车工程师的关键决策点。当几毫欧姆的差异可能影响传感器的灵敏度或控制系统的精确性时,选择正确的电阻不仅仅是满足规格的问题——它关系到车辆在极端条件下的安全性、可靠性和性能。在这份全面指南中,我们
    贞光科技 2025-03-12 17:25 152浏览
  • 现代旅游风气盛行,无论国内或国外旅游,导航装置无疑就是最佳的行动导游;在工作使用上也有部分职业(如:外送服务业)需要依靠导航系统的精准,才能将餐点准确无误的送至客户手上。因此手机导航已开始成为现代生活上不可或缺的手机应用之一。「它」是造成产品潜在风险的原因之一外送服务业利用手机导航,通常是使用手机支架固定在机车上,但行进间的机车其环境并不一定适用于安装手机,因行进间所产生的振动可能会影响部分的功能,进而导致受损。您是否曾在新闻报导中看过:有使用者回报在机车上使用手机架导航会造成相机无法开启?苹果
    百佳泰测试实验室 2025-03-13 18:17 194浏览
  • DeepSeek自成立之初就散发着大胆创新的气息。明明核心开发团队只有一百多人,却能以惊人的效率实现许多大厂望尘莫及的技术成果,原因不仅在于资金或硬件,而是在于扁平架构携手塑造的蜂窝创新生态。创办人梁文锋多次强调,与其与大厂竞争一时的人才风潮,不如全力培养自家的优质员工,形成不可替代的内部生态。正因这样,他对DeepSeek内部人才体系有着一套别具一格的见解。他十分重视中式教育价值,因而DeepSeek团队几乎清一色都是中国式学霸。许多人来自北大清华,或者在各种数据比赛中多次获奖,可谓百里挑一。
    优思学院 2025-03-13 12:15 171浏览
  • 文/杜杰编辑/cc孙聪颖‍主打影像功能的小米15 Ultra手机,成为2025开年的第一款旗舰机型。从发布节奏上来看,小米历代Ultra机型,几乎都选择在开年发布,远远早于其他厂商秋季主力机型的发布时间。这毫无疑问会掀起“Ultra旗舰大战”,今年影像手机将再次被卷上新高度。无意臆断小米是否有意“领跑”一场“军备竞赛”,但各种复杂的情绪难以掩盖。岁岁年年机不同,但将2-3年内记忆中那些关于旗舰机的发布会拼凑起来,会发现,包括小米在内,旗舰机的革新点,除了摄影参数的不同,似乎没什么明显变化。贵为旗
    华尔街科技眼 2025-03-13 12:30 187浏览
  • 一、行业背景与需求痛点智能电子指纹锁作为智能家居的核心入口,近年来市场规模持续增长,用户对产品的功能性、安全性和设计紧凑性提出更高要求:极致空间利用率:锁体内部PCB空间有限,需高度集成化设计。语音交互需求:操作引导(如指纹识别状态、低电量提醒)、安全告警(防撬、试错报警)等语音反馈。智能化扩展能力:集成传感器以增强安全性(如温度监测、防撬检测)和用户体验。成本与可靠性平衡:在复杂环境下确保低功耗、高稳定性,同时控制硬件成本。WTV380-P(QFN32)语音芯片凭借4mm×4mm超小封装、多传
    广州唯创电子 2025-03-13 09:24 141浏览
  • 前言在快速迭代的科技浪潮中,汽车电子技术的飞速发展不仅重塑了行业的面貌,也对测试工具提出了更高的挑战与要求。作为汽车电子测试领域的先锋,TPT软件始终致力于为用户提供高效、精准、可靠的测试解决方案。新思科技出品的TPT软件迎来了又一次重大更新,最新版本TPT 2024.12将进一步满足汽车行业日益增长的测试需求,推动汽车电子技术的持续革新。基于当前汽车客户的实际需求与痛点,结合最新的技术趋势,对TPT软件进行了全面的优化与升级。从模型故障注入测试到服务器函数替代C代码函数,从更准确的需求链接到P
    北汇信息 2025-03-13 14:43 153浏览
  • 文/Leon编辑/cc孙聪颖作为全球AI领域的黑马,DeepSeek成功搅乱了中国AI大模型市场的格局。科技大厂们选择合作,接入其模型疯抢用户;而AI独角兽们则陷入两难境地,上演了“Do Or Die”的抉择。其中,有着“大模型六小虎”之称的六家AI独角兽公司(智谱AI、百川智能、月之暗面、MiniMax、阶跃星辰及零一万物),纷纷开始转型:2025年伊始,李开复的零一万物宣布转型,不再追逐超大模型,而是聚焦AI商业化应用;紧接着,消息称百川智能放弃B端金融市场,聚焦AI医疗;月之暗面开始削减K
    华尔街科技眼 2025-03-12 17:37 245浏览
  • 在海洋监测领域,基于无人艇能够实现高效、实时、自动化的海洋数据采集,从而为海洋环境保护、资源开发等提供有力支持。其中,无人艇的控制算法训练往往需要大量高质量的数据支持。然而,海洋数据采集也面临数据噪声和误差、数据融合与协同和复杂海洋环境适应等诸多挑战,制约着无人艇技术的发展。针对这些挑战,我们探索并推出一套基于多传感器融合的海洋数据采集系统,能够高效地采集和处理海洋环境中的多维度数据,为无人艇的自主航行和控制算法训练提供高质量的数据支持。一、方案架构无人艇要在复杂海上环境中实现自主导航,尤其是完
    康谋 2025-03-13 09:53 169浏览
  • 各大Logo更新汇报 | NEW百佳泰为ISO/IEC17025实验室,特为您整理2025年3月各大Logo的最新规格信息。USB™▶ USB Type-C/PD 互操作性MacBook Pro 16英寸(Apple M4 Max 芯片,36GB 内存–1TB SSD–140W USB-C电源适配器)或 MacBook Pro 16英寸(M4 Pro芯片,24GB内存–512 TB SSD–140W USB-C电源适配器),这些型号支持USB4 80Gbps传输速度和 140W EPR功率。需尽
    百佳泰测试实验室 2025-03-13 18:20 178浏览
我要评论
0
9
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦