新能源汽车系统电磁兼容测试验证带来的多重挑战​

云脑智库 2021-05-10 00:00








新能源汽车系统

电磁兼容测试



常规车辆的电磁兼容性能在整个测试体系中已有较好的系统化要求,相应试验的实现条件也较完善,能够较好地完成国家法规体系要求进行的试验。


随着整个汽车行业的智能化、网联化、电动化发展,车辆的属性已逐渐从单一个体,演变成一个庞大智能交通网络上的节点。


“三化”带给车辆最大的变化,是使车辆与其周遭环境,包括道路交通设施、其他车辆、环境中包含的各种其他节点,越来越紧密地融合在一起。车上新增的各种功能都在强调与环境的交互,这给车辆电磁兼容性能测试验证带来了新的挑战--新能源汽车测试系统。



按照常规分类方式,车辆的电磁兼容性能往往分为发射特性和抗扰特性。发射特性关注对车辆以外的其他电器设备的保护,我国主要由法规来要求(GB 14023、GB/T 18387 和 GB 34660);抗扰特性则关注车辆自身对外部干扰的耐受能力,既有法规要求(GB 34660),更要关注车辆在抗扰测试中的安全和体验表现。



01

智能网联汽车电磁辐射发射测试

面临的挑战


智能网联汽车引入了更多的智能安全子系统与网联通信子系统,这些新系统与传统汽车子系统的最大区别在于,它们不仅通过内部传感器收集汽车内部的运行信息,还通过全新的外部传感器,如蜂窝移动通信天线、V2X 通信天线、车载毫米波雷达、视频图像采集系统等,主动地收集车辆周围,甚至超出视野范围的交通信息及其他车辆运行状态信息。


这些传感器有些是通过无线通信获取信息的,工作时对外辐射电磁波,而且需要一台能够与其通信的外部设备才能够维持正常的通信工况。按照电磁兼容测试的常规思路,要求车辆进行辐射发射测试时,能够覆盖最大发射状态的工况。这就要求所有系统和功能都处于工作状态,包括车载无线通信系统。然而将满足国家无线电管理要求的无线发射设备辐射出的有用信号作为骚扰,并要求其低于整车辐射发射的限值,这种做法可能会造成无线电管理和电磁兼容管理的结果相矛盾,引起政策理解或执行层面的问题。


为此,全国无线电干扰标准化技术委员会 D 分会正在讨论对有意发射引发的工作频段的辐射发射超标豁免,并将豁免办法写进 GB 14023 标准的附录中。那么在试验过程中,如何区分本车的发射与用于激活本车设备工作的外部设备的发射、如何区分有意发射设备工作频段的信号与其带来的非工作频段的谐波或杂散发射,是判断被测车辆辐射发射是否满足要求需要解决的首要问题。


传统汽车上所用无线设备的上限频率不超过 6 GHz,引入 5G V2X 通信和毫米波雷达后,车载无线设备的上限工作频率飙升至 81 GHz。对于如此高频段的汽车辐射发射,国际国内均未有标准给出明确的限值,汽车电磁兼容实验室在设计建造时往往也不会针对如此高的频率。


6 GHz 以上频段的整车对外辐射发射需要有公共认可的测试方法和限值标准来约束,毫米波频段的测试也需要对实验室和测试设备提出新的要求。从测试设备角度来说,在智能网联系统的辐射发射测试中,还须保证测试设备不会影响测试环境的电磁底噪,否则,辐射发射测试结果的准确性将难以保证。




02

智能网联汽车电磁抗扰测试面临的挑战


首先是测试重心改变所带来的挑战。


传统电磁抗扰测试的测试重心更多是整车和零部件的抗扰水平,即被测车辆与被测零部件在特定电磁环境下是否会发生功能紊乱等现象,这是一种从功能实现的角度衡量整车或零部件性能的方法。而在智能网联车辆上,由于车辆获得了一定程度的自我控制权,具有控制权的系统能否按照其预期功能正确执行便是智能网联车辆所要重点关注的问题,而这一问题恰恰是功能安全所关心的问题。因此,智能网联汽车的电磁抗扰测试重心需要从简单的功能实现转为从安全的角度考察。


其次是基于需求的验证所带来的挑战。


诸如ISO 26262《道路车辆功能安全》等众多车辆安全性标准目前所正在做的是对于安全需求的不断累积与更新。整车层级安全的实现过程实际上就是整车层面的不同安全需求的设计与实现过程,这实际是一种弱化约束的方法。在安全性设计阶段,将严苛的、难以通过整体方式解决的安全性问题不断切片,每一片代表一个特定的安全需求,以此达到对安全性问题的拆分 ;在后续的测试验证阶段,通过验证一个个安全需求是否实现,采用累加的方式一步步地逼近完整的安全性问题,这样可以使整个评估过程更容易执行,也实现了对于优解的近似代替。但这种基于安全需求的测试方法受需求覆盖率影响极大,低覆盖率下,安全需求累积程度不够,难以充分确定车辆的安全性能。因此,如何尽可能多地搜寻、确定并测试安全需求,是智能网联车辆电磁抗扰测试所面临的又一个挑战。


第三是测试量带来的挑战。


显然,测试的安全需求越多,得到的结果越逼近最终的完整安全性验证结论。但大量的安全需求所带来的是测试量的爆炸性增长,按照 ISO 26262 道路车辆功能安全的定义,造成人身及财产损失发生的危害事件是内部危害与外部运行情境的组合。同一内部危害状态与不同的外部运行情境的组合,所产生的危害事件的风险等级与伤害结果可能大不相同。因此,为了保证测试的有效性与高覆盖率,必须要考虑所有可能的车辆状态与所有的运行情境的组合。


但问题也随之而来,一方面,ISO 26262 功能安全标准关注的是来源于系统故障行为的危害,包含预期行为的终止与非预期行为的发生两个方面,再细究上述故障行为的来源,又包含随机硬件失效与系统性失效等等。即从功能安全角度来看,所需要考虑的内部危害来源就极多;另一方面,外界运行情境的不同需要充分考虑可能的道路属性(道路几何结构、拓扑结构、路面性质等)、环境属性(天气、温度、湿度不同时间段等)、交通属性(其他交通参与者的数目、运行状态、相对于本车的位置信息等)。内外两种复杂选项组合而成的测试情景数目巨大,再加上电磁抗扰测试所要求的不同频段、强度、极化方式、调制方式的电磁干扰,最终生成的智能网联汽车电磁抗扰测试情景的数目是惊人的,无法在合理的时间及开销下实现完整的全情景、全工况电磁抗扰测试。即,智能网联车辆电磁抗扰的穷举测试在现实中是无法实现的,需要寻找更为高效的测试思路与测试方法。


最后是全局安全问题所带来的挑战。整车功能安全的实现并不代表整车层级安全的实现。整车层级的安全除了功能实现与功能安全之外,还包含预期功能安全与网络安全两个方面。从最基础的功能实现开始(即仅关注目标功能是否能够正常实现,而较少关心或基本不关心外界运行情景的小范围变化),功能安全在功能实现的基础上加入了风险的判定,旨在确定预期功能是否能够正确地实现,关注的是实现的正确性与质量高低 ;预期功能安全在确保预期功能已经正确实现的情况下,将预期功能和实际需求功能做出对比,观察预期功能是否能够满足实际情景使用中对它的需求 ;网络安全在预期功能自身的实现已具有完满性的情况下,探讨外部的有意入侵行为是否会对预期功能自身的完满性造成影响。这几个方向相辅相成,互为补充。


因而在执行智能网联车辆电磁抗扰测试时,传统电磁抗扰测试所关注的功能实现问题在安全层面上来说是不充分的安全问题的妥善解决需要从四个角度的特点入手,分别设计并执行测试过程。综合来说,以上几大挑战实质上就是在测试用例设计方面面临的挑战。既然对于确保智能网联汽车安全性的电磁抗扰试验而言,穷举测试是不现实的,那么若要开发出一套业界可以接受的电磁抗扰试验标准,就需要对测试用例进行凝练。智能网联汽车,或者自动驾驶汽车的安全性至关重要,如何在凝练测试用例的同时,确保其电磁安全性能够达到或者超出现有车辆的水平,这要求设计人员对智能网联汽车的新功能、性能,及其与车载现有其他系统(例如动力、底盘、转向)之间的关系有比较深入的了解,能够从各种故障行为、外部情境及其造成的危害角度出发,梳理出使智能网联汽车达到人们预期电磁安全水平所必须验证的测试用例集,以及在这些测试用例之下必须关注的车辆参数水平,这需要相关技术人员在摸索中逐渐完善。


智能网联汽车之所以叫智能网联,就是因为搭载了各种可感知周边环境的传感器和可与非视距外围设备通信的无线通信设备,使车辆具备了正确感知周遭视距和非视距范围内的环境并做出相应反应的能力。传统汽车进行电磁兼容测试时,通常仅要求试验环境的电磁背景干净,且车辆能够在试验环境中达到一定的车速 ;而智能网联汽车则需要在实验环境中去模拟道路环境,并与车辆进行正常交互,以便欺骗车载传感器和无线通信设备,使其误认为车辆确实在道路上运行,相应的智能、网联功能能够正常激活。这些要求对试验条件提出了极大挑战。



首先,这需要用到一系列辅助设备。例如,激活自适应巡航系统(ACC)和自动紧急制动系统(AEB)进行电磁兼容性能测试时,需要用到雷达目标模拟器或角反射器......其次,在试验环境中,还不能存在与道路环境中的障碍物及目标特性接近、可能导致车载智能网联功能非正常触发或不能正常触发的额外因素,例如反射特性与车载雷达系统目标相当的反射体,或特别昏暗及特别明亮会影响车载摄像头工作的灯光等。


这需要在试验之前对试验环境进行合理的调整和标定。除了需要用到更多类型的设备来完成并对测试环境提出了特殊要求以外,智能网联汽车的电磁抗扰测试也对测试设备提出了更高的技术要求 :在智能网联系统的辐射抗扰测试中,须保证测试设备不会受施加的电磁骚扰的影响,否则,无法判断测试结果中出现的功能或性能降级是因为测试设备被干扰还是因为车辆本身抗扰性能不足而导致的 ;极端情况下,测试设备还可能因辐射抗扰试验的高场强而损坏。这也导致很多智能网联汽车路试、台架测试和仿真测试所用设备并不能用于电磁兼容测试,电磁兼容测试设备需要做特殊的设计处理。

免责声明本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

 戳#阅读原文# ,精彩继续,你若喜欢,#分享//在看#

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 107浏览
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 173浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 141浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 149浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 157浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 168浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 123浏览
  • 故障现象 一辆2007款法拉利599 GTB车,搭载6.0 L V12自然吸气发动机(图1),累计行驶里程约为6万km。该车因发动机故障灯异常点亮进厂检修。 图1 发动机的布置 故障诊断接车后试车,发动机怠速轻微抖动,发动机故障灯长亮。用故障检测仪检测,发现发动机控制单元(NCM)中存储有故障代码“P0300 多缸失火”“P0309 气缸9失火”“P0307 气缸7失火”,初步判断发动机存在失火故障。考虑到该车使用年数较长,决定先使用虹科Pico汽车示波器进行相对压缩测试,以
    虹科Pico汽车示波器 2025-01-15 17:30 95浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 224浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,与汽车技术领先者法雷奥合作,采用创新的开放系统协议(OSP)技术,旨在改变汽车内饰照明方式,革新汽车行业座舱照明理念。结合艾迈斯欧司朗开创性的OSIRE® E3731i智能LED和法雷奥的动态环境照明系统,两家公司将为车辆内饰设计和功能设立一套全新标准。汽车内饰照明的作用日益凸显,座舱设计的主流趋势应满足终端用户的需求:即易于使用、个性化,并能提供符合用户生活方式的清晰信息。因此,动态环境照明带来了众多新机遇。智能LED的应用已
    艾迈斯欧司朗 2025-01-15 19:00 78浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 132浏览
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 95浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 193浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 180浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦