Cortex-M7内核的Cache是如何提升访问效率的?且看硬核实测

嵌入式资讯精选 2021-05-09 15:10

今天痞子衡给大家介绍的是实抓Flash信号波形来看i.MXRT的FlexSPI外设下AHB读访问情形

上一篇文章 《实抓Flash信号波形来看i.MXRT的FlexSPI外设下AHB读访问情形(有预取)》 里痞子衡抓取了Cache关闭但Prefetch开启下的AHB读访问对应的Flash端时序波形图,我们知道了FlexSPI的Prefetch功能确实在一定程度上改善了Flash访问效率,但是AHB RX Buffer最大仅1KB(对i.MXRT1050而言),不可拆分成更小粒度Buffer去缓存不同Flash地址处的数据(对于同一AHB master而言),这样对于代码中多个不同小数据块重复的Flash空间访问,Prefetch机制并没有明显提升访问效率。

针对这种不连续Flash地址空间频繁访问低效情况,ARM Cortex-M7内核给出了解决方案,那就是L1 Cache技术,今天痞子衡就来继续测一测开启L1 Cache下的Flash AHB读访问情形(本文主要针对D-Cache):

一、Cortex-M7的Cache功能

对于Cortex-M系列家族(M0+/M3/M4/M7/M23/M33/M35P/M55)来说,L1 Cache仅在Cortex-M7和Cortex-M55内核上存在,说白了,L1 Cache是专为高性能内核配置的,而目前的i.MXRT1xxx系列微控制器都是基于Cortex-M7内核。

下面是i.MXRT1050的内核系统框图,可以看到它集成了32KB D-Cache,Cache经由AXI64总线连到SIM_M7和SIM_EMS模块,最终转成AHB总线连接到FlexSPI模块,因此对于Flash的AHB读访问是可以受到D-Cache加速的。

关于D-Cache工作机制,可以在 ARM Cortex-M7 Processor Technical Reference Manual 手册中找到详细解释。简单地概括就是32KB D-Cache会被划分成1024个Cache Line,每个Cache Line大小为32个字节,四个Cache Line是一组(即所谓的4-way set associative),每一组Cache Line会有一个地址标签,地址标签用来记录Cache所缓存的数据所在目标地址信息。

L1 D-Cache使能时,对目标存储器的AHB读访问总共有两大类:Hit(要访问的数据在Cache里面)、Miss(要访问的数据不在Cache里面),Hit没什么好说的,直接从Cache里取数据就行了;Miss后则会先把数据从目标存储器中读到Cache里,然后再从Cache读出数据(这就是所谓的Read-Allocate,实际上有另一个名词Read-Through与之对应,Read-Through即直接从目标存储器中读出数据,一般是Cache不使能时的行为)。

对目标地址空间的Cache策略控制主要是属性配置(在内核MPU模块里)和开关控制(在内核SCB模块里),下面 BOARD_ConfigMPU() 函数即是典型的对FlexSPI地址映射空间所分配的Flash区域的Cache属性配置,这个代码里将0x60000000开始的64MB空间属性配成了Normal Memory,不共享,Cache使能并且写访问行为是Write-Back(写访问还有另一种策略Write-Through),读访问行为不用配置(固定Read-Allocate)。

/* MPU configuration. */
void BOARD_ConfigMPU(void)
{
    /* Disable I cache and D cache */
    SCB_DisableICache();
    SCB_DisableDCache();

    /* Disable MPU */
    ARM_MPU_Disable();

    /* Region 0 setting: Instruction access disabled, No data access permission. */
    MPU->RBAR = ARM_MPU_RBAR(00x00000000U);
    MPU->RASR = ARM_MPU_RASR(1, ARM_MPU_AP_NONE, 20000, ARM_MPU_REGION_SIZE_4GB);

    /* Region 2 setting: Memory with Device type, not shareable,  non-cacheable. */
    MPU->RBAR = ARM_MPU_RBAR(20x60000000U);
    MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 20000, ARM_MPU_REGION_SIZE_512MB);

#if defined(XIP_EXTERNAL_FLASH) && (XIP_EXTERNAL_FLASH == 1)
    /* Region 3 setting: Memory with Normal type, not shareable, cacheable, outer/inner write back. */
    MPU->RBAR = ARM_MPU_RBAR(30x60000000U);
    MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_RO, 00110, ARM_MPU_REGION_SIZE_64MB);
#endif

    /* Enable MPU */
    ARM_MPU_Enable(MPU_CTRL_PRIVDEFENA_Msk);

    /* Enable I cache and D cache */
    SCB_EnableDCache();
    SCB_EnableICache();
}

最后再提一下跟本文主题不相干的Cache使能下写访问行为策略:

  • (Hit情形下)Write-Through模式: 直接写到目标存储器中并且也在Cache里更新(无多Master访问造成的数据一致性问题,但没有提升写访问性能)
  • (Hit情形下)Write-Back模式: Cache line会被标为dirty,等到此行被invalidate时,才会执行实际的写操作,将Cache Line里面的数据写到目标存储器。(提升了写访问性能,但有隐患,如果 Cache 命中,此时仅 Cache 更新了,目标存储器没有更新,其他Master从目标存储器里面读出来的数据是错误的)
  • (Miss情形下)Write-Allocate: 先把要写的数据载入到Cache,然后再flush进目标存储器。
  • (Miss情形下)no-Write-Allocate: 直接写入目标存储器。

二、D-Cache实验准备

参考文章 《实抓Flash信号波形来看i.MXRT的FlexSPI外设下AHB读访问情形(无缓存)》 里的第一小节 实验准备,本次实验需要做一样的准备工作。

三、D-Cache实验代码

参考文章 《实抓Flash信号波形来看i.MXRT的FlexSPI外设下AHB读访问情形(无缓存)》 里的第二小节 实验代码,本次实验代码关于工程和链接文件方面是一样的设置,但是具体测试函数改成如下ramfunc型函数 test_cacheable_read()。关于D-Cache这次会有很多种不同测试,while(1)语句前的系统配置保持不变,while(1)里面的语句可根据实际测试情况去调整:

#if (defined(__ICCARM__))
#pragma optimize = none
__ramfunc 
#endif
void test_cacheable_read(void)
{
    // 系统配置
    /* Disable L1 I-Cache*/
    SCB_DisableICache();

    /* Enable L1 D-Cache*/
    SCB_EnableDCache();
    SCB_CleanInvalidateDCache();

    // 根据测试需求,开/关FlexSPI的Prefetch特性

    while (1)
    {
        // 测试用例代码,可按情况调整
    } 
}

为了便于分辨IO[1:0]上的数据去帮助分析本系列测试用例结果,我们需要拓展下特殊const数据区.ahbRdBuffer设置如下:

const uint8_t ahbRdBlock1[1024] @ ".ahbRdBuffer1" = {
// 正顺序
0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13,
0x20, 0x21, 0x22, 0x23, 0x30, 0x31, 0x32, 0x33,
// 倒顺序
0x33, 0x32, 0x31, 0x30, 0x23, 0x22, 0x21, 0x20,
0x13, 0x12, 0x11, 0x10, 0x03, 0x02, 0x01, 0x00,
// 正插序
0x01, 0x00, 0x03, 0x02, 0x11, 0x10, 0x13, 0x12,
0x21, 0x20, 0x23, 0x22, 0x31, 0x30, 0x33, 0x32,
// 倒插序
0x32, 0x33, 0x30, 0x31, 0x22, 0x23, 0x20, 0x21,
0x12, 0x13, 0x10, 0x11, 0x02, 0x03, 0x00, 0x01,
};

const uint8_t ahbRdBlock2[1024] @ ".ahbRdBuffer2" = {
// 倒插序
0x32, 0x33, 0x30, 0x31, 0x22, 0x23, 0x20, 0x21,
0x12, 0x13, 0x10, 0x11, 0x02, 0x03, 0x00, 0x01,
// 正插序
0x01, 0x00, 0x03, 0x02, 0x11, 0x10, 0x13, 0x12,
0x21, 0x20, 0x23, 0x22, 0x31, 0x30, 0x33, 0x32,
// 倒顺序
0x33, 0x32, 0x31, 0x30, 0x23, 0x22, 0x21, 0x20,
0x13, 0x12, 0x11, 0x10, 0x03, 0x02, 0x01, 0x00,
// 正顺序
0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13,
0x20, 0x21, 0x22, 0x23, 0x30, 0x31, 0x32, 0x33,
};

// 在工程链接文件中
keep{ section .ahbRdBuffer1, section .ahbRdBuffer2 };
place at address mem:0x60002400 { readonly section .ahbRdBuffer1 };
place at address mem:0x60002800 { readonly section .ahbRdBuffer2 };

四、D-Cache实验结果

4.1 重做无缓存一文中的实验

现在让我们在开启D-Cache的情况下重新做文章 《实抓Flash信号波形来看i.MXRT的FlexSPI外设下AHB读访问情形(无缓存)》 中全部实验:

#define AHB_ADDR_START (0x60002400)
void test_cacheable_read(void)
{
    // 略去系统配置(I-Cache、Prefetch关闭,D-Cache开启)
    while (1)
    {
        SDK_DelayAtLeastUs(10, SystemCoreClock);
        for (uint32_t i = 1; i <= 8; i++)
        {   
            SDK_DelayAtLeastUs(2, SystemCoreClock);
            memcpy((void *)0x20200000, (void *)AHB_ADDR_START, i);
        }
    } 
}
4.1.1 AHB_ADDR_START 取值 [0x60002400 - 0x60002418]

当 AHB_ADDR_START 取值范围在 [0x60002400 - 0x60002418] 中时,Flash端的时序波形图都是如下同一个。因为有了D-Cache,现在我们看不到周期性的CS信号了,说明除了Flash新地址访问是必须要通过FlexSPI外设去读取Flash之外,其后的同一Flash地址的重复访问都直接发生在D-Cache里了。

另外D-Cache起始缓存地址永远是32字节对齐的地址处,并且一次缓存32byte的数据(因为D-Cache Line大小就是32byte),所以波形结果里看,起始地址都是0x60002400,一次读取32byte数据(存在一个D-Cache Line里),因此之前不开D-Cache和Prefetch下的AHB Burst Read策略导致的访问不同对齐地址的波形差异测试结果在这里就不存在了。

4.1.2 AHB_ADDR_START = 0x60002419

当实际代码中要读取的Flash数据会横跨两个相邻32字节对齐的数据块(0x60002400 - 0x6000241f, 0x60002420 - 0x6000243f),此时Flash端会出现两次CS有效信号,每次均传输32byte数据,D-Cache一直在持续作用,这次动用了两个D-Cache Line(D-Cache总大小有32KB,共有1024个Cache Line),因此在Flash端我们还是看不到周期性CS信号。

4.1.3 追加实验,从0x60002400处读取1KB

当代码循环读取1KB数据时,波形图上可以看到32个CS有效信号,每个CS有效期间传输32byte数据,总计1KB数据的传输,D-Cache这次派出了32个 Cache Line,在Flash端我们依然看不到周期性CS信号。

4.2 重做有预取一文中的实验

现在让我们在开启D-Cache的情况下重新做文章 《实抓Flash信号波形来看i.MXRT的FlexSPI外设下AHB读访问情形(有预取)》 中全部实验:

4.2.1 循环读取首地址32字节对齐的1KB空间内的任意长度数据块,起始拷贝地址位于前31个字节内

这种情况下,Flash端实际波形与 《实抓Flash信号波形来看i.MXRT的FlexSPI外设下AHB读访问情形(有预取)》 中 4.1 里的测试结果差不多,这里就不再贴图了。Prefetch机制做第一层缓存,D-Cache获取Prefetch Buffer里的结果做二次缓存,唯一的差异是因为D-Cache的存在,缓存起始地址可能会发生变化(从八字节对齐变成了32字节对齐):

#define PREFETCH_TEST_ALIGNMENT  (7) // 可取值 0 - 31
#define PREFETCH_TEST_START      (0x60002400 + PREFETCH_TEST_ALIGNMENT)
uint32_t testLen = 0x1;  // 可取值 1 - (1KB-PREFETCH_TEST_ALIGNMENT)
void test_cacheable_read(void)
{
    // 略去系统配置(I-Cache关闭,Prefetch开启,D-Cache开启)
    while (1)
    {
        memcpy((void *)0x20200000, (void *)PREFETCH_TEST_START, testLen);
    } 
}
4.2.2 循环读取大于1KB的数据块或首地址非32字节对齐的1KB数据块

这种情况下,Flash端会有两次完整的1KB Prefetch操作,第一次Prefetch操作读取了0x60002400处的1KB,第二次Prefetch操作读取了0x60002800处的1KB。因为有D-Cache的存在,第二次Prefetch操作有了足够时间去完成,不用额外插入软延时去避免其被while(1)循环回来的下一次访问需求打断了:

void test_cacheable_read(void)
{
    // 略去系统配置(I-Cache关闭,Prefetch开启,D-Cache开启)
    while (1)
    {
        memcpy((void *)0x20200001, (void *)0x600024010x400);
    } 
}
4.2.3 循环读取两个不同数据块(在首地址32字节对齐的两个不同1KB空间内)

这种情况下,即使有D-Cache存在,第一次CS期间的Prefetch操作(即memcpy((void *)0x20200000, (void *)0x60002400, 0x100);引发的)还是被第二次CS的Prefetch操作打断了(即memcpy((void *)0x20200400, (void *)0x60002800, 0x100);),但是第二次CS期间的Prefetch操作不会再被打断,因为接下来while(1)循环回来的Flash数据访问需求已经缓存在D-Cache里:

void test_cacheable_read(void)
{
    // 略去系统配置(I-Cache关闭,Prefetch开启,D-Cache开启)
    while (1)
    {
        memcpy((void *)0x20200000, (void *)0x600024000x100);
        memcpy((void *)0x20200400, (void *)0x600028000x100);
    } 
}

4.3 如何在D-Cache使能的情况下看到周期性CS信号

前面测试了那么多种情况,我们有没有可能在Flash端看到周期性CS信号呢,即Flash持续地被读取呢?当然可以,我们知道D-Cache总大小是32KB,我们只要循环拷贝32KB以上数据,D-Cache就开始hold不住了,这不,下面代码就能让我们看到久违的周期时序波形图了(小心,Flash持续工作会多耗电的,哈哈)。

void test_cacheable_read(void)
{
    // 略去系统配置(I-Cache关闭,Prefetch开启,D-Cache开启)
    while (1)
    {
        memcpy((void *)0x20200000, (void *)0x600024000x8000 + 1);
    } 
}

至此,实抓Flash信号波形来看i.MXRT的FlexSPI外设下AHB读访问情形痞子衡便介绍完毕了,掌声在哪里~~~

1.傻瓜式教程:如何使用“多合一”开发工具STM32CubeIDE

2.单片机6年想转嵌入式Linux ,不知如何下手?

3.80家MCU国产和国外厂家汇总

4.对比STM32和GD32固件库,你会发现其中的秘密!

5.你的单片机裸机程序框架是怎样的?

6.大神Jim Keller背书!RISC-V进军AI和汽车芯片领域!

免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。


嵌入式资讯精选 掌握最鲜资讯,尽领行业新风
评论 (0)
  • 核心板简介创龙科技 SOM-TL3562 是一款基于瑞芯微 RK3562J/RK3562 处理器设计的四核 ARM C ortex-A53 + 单核 ARM Cortex-M0 全国产工业核心板,主频高达 2.0GHz。核心板 CPU、R OM、RAM、电源、晶振等所有元器件均采用国产工业级方案,国产化率 100%。核心板通过 LCC 邮票孔 + LGA 封装连接方式引出 MAC、GMAC、PCIe 2.1、USB3.0、 CAN、UART、SPI、MIPI CSI、MIPI
    Tronlong 2025-03-24 09:59 157浏览
  • 文/郭楚妤编辑/cc孙聪颖‍在人工智能与实体经济深度融合的时代浪潮中,究竟何种 AI 产品,方能切实契合用户对美好未来的向往与期待?3 月 20 日,备受全球瞩目的中国家电及消费电子博览会(AWE2025)于上海新国际博览中心盛大开幕。展会首日,长虹重磅推出首款治愈系 AI TV、客餐厅 PRO 共享空调,以及面向低空经济领域的通信模组等一系列创新产品。这一举动充分展现了长虹在家电领域全面推进 AI 化的坚定决心,以及为低空经济等新兴产业提供有力科技支撑的硬核实力 。“首发” 新品,领航用户价值
    华尔街科技眼 2025-03-21 21:13 54浏览
  • 很多时候我们会以价值来衡量一个人或一件事,也很容易以成败来论定其价值;所谓胜者为王败者为寇,同样的一个人,在成功时是一种评价,如若失败,所得到的又是另一种评断。古训有云:「不以成败论英雄」,成败得失只是一时的胜负,决定胜败的因素很多,无论人、事、时、地、物,都能影响最后的结果,然而结果却不一定是真正最终的价值论断。好比历史上名垂千古的楚汉之争,刘邦最终得胜,开国立业成为汉高祖,然而,刘邦的为人处事、风格操守或是韬略能力,真的就强于项羽吗?其实,刘邦若无萧何、韩信等人鼎力相辅,若非民心一面倒向刘邦
    优思学院 2025-03-21 12:08 36浏览
  • 在智能终端设备快速普及的当下,语音交互已成为提升用户体验的关键功能。广州唯创电子推出的WT3000T8语音合成芯片,凭借其卓越的语音处理能力、灵活的控制模式及超低功耗设计,成为工业控制、商业终端、公共服务等领域的理想选择。本文将从技术特性、场景适配及成本优势三方面,解析其如何助力行业智能化转型。一、核心技术优势:精准、稳定、易集成1. 高品质语音输出,适配复杂环境音频性能:支持8kbps~320kbps宽范围比特率,兼容MP3/WAV格式,音质清晰自然,无机械感。大容量存储:内置Flash最大支
    广州唯创电子 2025-03-24 09:08 163浏览
  • 在人工智能与物联网技术蓬勃发展的今天,语音交互已成为智能设备的重要功能。广州唯创电子推出的WT3000T8语音合成芯片凭借其高性能、低功耗和灵活的控制方式,广泛应用于智能家居、工业设备、公共服务终端等领域。本文将从功能特点、调用方法及实际应用场景入手,深入解析这款芯片的核心技术。一、WT3000T8芯片的核心功能WT3000T8是一款基于UART通信的语音合成芯片,支持中文、英文及多语种混合文本的实时合成。其核心优势包括:高兼容性:支持GB2312/GBK/BIG5/UNICODE编码,适应不同
    广州唯创电子 2025-03-24 08:42 152浏览
  • 无论你是刚步入职场的新人,还是已经有几年经验的职场老手,培养领导力都是职业发展中一个至关重要的环节。拥有良好的领导能力不仅能让你从人群中脱颖而出,也能让你在团队中成为一个值得信赖、富有影响力的核心成员。什么是领导力?领导力并不仅仅意味着“当老板”或者“发号施令”。它更多地是一种能够影响他人、激发团队潜能,并带领大家实现目标的能力。一位优秀的领导者需要具备清晰的沟通能力、解决问题的能力,以及对人心的深刻理解。他们知道如何激励人心,如何在压力下保持冷静,并能在关键时刻做出正确的决策。如何培养领导力?
    优思学院 2025-03-23 12:24 77浏览
  • 人形机器人产业节奏预估:2024年原型机元年,2025年小规模量产元年。当宇树科技H1人形机器人以灵动的手部动作在春晚舞台上演创意融合舞蹈《秧Bot》,舞出"中国智造"时,电视机前十几亿观众第一次深刻意识到:那个需要仰望波士顿动力的时代正在落幕。*图源:宇树科技短短数周后,宇树G1机器人又用一段丝滑的街舞在网络收割亿级播放量,钢铁之躯跳出赛博朋克的浪漫。2月11日,宇树科技在其京东官方旗舰店上架了两款人形机器人产品,型号分别为Unitree H1和G1。2月12日,9.9万元的G1人形机器人首批
    艾迈斯欧司朗 2025-03-22 21:05 119浏览
  • 今年全国两会期间,“体重管理”和“育儿”整体配套政策引发了持久广泛关注。从“吃”到“养”,都围绕着国人最为关心的话题:健康。大家常说“病从口入”,在吃这件事上,过去大家可能更多是为了填饱肚子,如今,消费者从挑选食材到厨电都贯彻着健康的宗旨,吃得少了更要吃得好了。这也意味着在新消费趋势下,谁能抓住众人的心头好,就能带起众人的购买欲望,才能在新一轮竞争中脱颖而出。作为家电行业的风向标,在2025年中国家电及消费电子博览会(AWE)上,这两个话题也被媒体和公众频繁提及。深耕中国厨房三十余年的苏泊尔再次
    华尔街科技眼 2025-03-22 11:42 64浏览
  • 在智慧城市领域中,当一个智慧路灯项目因信号盲区而被迫增设数百个网关时,当一个传感器网络因入网设备数量爆增而导致系统通信失效时,当一个智慧交通系统因基站故障而导致交通瘫痪时,星型网络拓扑与蜂窝网络拓扑在构建广覆盖与高节点数物联网网络时的局限性便愈发凸显,行业内亟需一种更高效、可靠与稳定的组网技术以满足构建智慧城市海量IoT网络节点的需求。星型网络的无线信号覆盖范围高度依赖网关的部署密度,同时单一网关的承载设备数量有限,难以支撑海量IoT网络节点的城市物联系统;而蜂窝网络的无线信号覆盖范围同样高度依
    华普微HOPERF 2025-03-24 17:00 143浏览
  • 在工业智能化与物联网深度融合的今天,深圳触觉智能推出首款搭载瑞芯微RK3506芯片的Linux星闪网关开发板,以“多核异构架构+星闪无线通信”双核驱动,为工业控制、智能物联等领域带来100%全国产突破性解决方案。RK3506-国产芯的硬核实力作为瑞芯微2024年第四季度推出的入门级工业芯片平台,RK3506以三核Cortex-A7(1.5GHz)+单核Cortex-M0多核异构架构为核心,兼具高性能与实时性。其特性包括:工业级可靠性支持最高-40~85℃宽温运行,通过电磁兼容、高温高湿老化等严苛
    Industio_触觉智能 2025-03-21 12:00 59浏览
  • 在科技飞速发展的今天,视频监控领域对于高清、稳定、多功能解码芯片的需求与日俱增。现在,一款具有划时代意义的解码芯片——XS9922B 震撼登场,它将为车载监控、倒车影像等应用场景带来全新的变革体验。多协议支持,高清标清一网打尽,XS9922B 作为一款 4 通道模拟复合视频解码芯片,拥有强大的协议兼容性。它不仅支持 HDCCTV 高清协议,让你轻松捕捉高清画面的每一个细节,还兼容 CVBS 标清协议,满足不同设备和场景的多样化需求。无论是 720P/1080P 的高清制式,还是 960H/D1
    芯片徐15652902508 2025-03-21 13:58 32浏览
  •       知识产权保护对工程师的双向影响      正向的激励,保护了工程师的创新成果与权益,给企业带来了知识产权方面的收益,企业的创新和发明大都是工程师的劳动成果,他们的职务发明应当受到奖励和保护,是企业发展的重要源泉。专利同时也成了工程师职称评定的指标之一,专利体现了工程师的创新能力,在求职、竞聘技术岗位或参与重大项目时,专利证书能显著增强个人竞争力。专利将工程师的创意转化为受法律保护的“无形资产”,避免技术成果被他人抄袭或无偿使
    广州铁金刚 2025-03-25 11:48 91浏览
  • 精益管理的理念和思维是源于日本的丰田模式,虽然精益管理有很多有效而丰有智慧的思想和方法,但在欧美企业要应用精益也并不容易,始终东西方的文化、人民习性都会存在着一点差异。不过,客观来说,精益管理是其优缺点的,以下,优思学院[1]综合吉朱·安东尼(Jiju Antony)教授《中小企业精益六西格玛》一书中的研究略作说明。精益的优点以下是精益生产系统的一些优点(Schonberger,2008):1)积极的劳动力效应。精益战略往往基于员工的主动性,那些从事实际工作的员工才是改善工作的最具创造力的人员。
    优思学院 2025-03-21 15:09 31浏览
  • 近年来,随着半导体产业的快速发展和技术的不断迭代,物联网设备种类繁多(如智能家居、工业传感器),对算力、功耗、实时性要求差异大,单一架构无法满足所有需求。因此米尔推出MYD-YT113i开发板(基于全志T113-i)来应对这一市场需求。米尔基于全志T113-i核心板及开发板part 01  T113-i芯片及OpenAMP简介T113-i芯片简介T113-i由两颗ARM A7 、一颗C906(RISC-V)和一颗DSP(HIFI 4)组成。C906(RISC-V核)特性:主频
    米尔电子嵌入式 2025-03-21 16:28 40浏览
  • 文/Leon编辑/cc孙聪颖‍去年,百度公关部副总裁璩静的争议言论闹得沸沸扬扬,最终以道歉离职收场。时隔一年,百度的高管又出事了。近日,“百度副总裁谢广军女儿开盒孕妇”事件登上热搜,持续发酵,引起网友对百度数据安全性的怀疑。3月19日晚间,百度正式发布声明,表示坚决谴责窃取和公开他人隐私的网络暴力行为,同时强调,百度内部实施匿名化、假名化处理,经查验,泄露数据并非来自百度,而是海外的社工库,“当事人承认家长给她数据库”为不实信息,针对相关谣言百度已经向公安机关报案。然而,并非所有网友都对这份声明
    华尔街科技眼 2025-03-21 21:21 98浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦