光纤通信的OFDR光频域反射技术应用

传感器技术 2021-04-30 00:00


光纤通信的发展对我国的经济建设起到重要的作用。光纤通讯具有无法比拟的优势:传输频宽带、损失消耗较少。光纤通信的建设起始于二十世纪九十年代,并且得到大规模的发展。


光纤通信作为承载着很大信息量的传输网络,具有一定的风险和不稳定性,为了保证光纤通信的顺利运行和安全,需要开发一种能精确测量出光纤通信特性的工具或者是仪器。光频域反射能够准确的检测出光纤通信特性,光频域反射主要是分析光纤的散射光时间差、光程差来检测光纤通讯的。


OFDR光频域反射技术的原理介绍 


1、光纤中的散射



当光通过不均匀介质时会向四面八方传播,这就是光的散射,例如晴朗的天空呈现蓝色,海水也是蓝的,这都是太阳光发生散射的结果(波长较短的蓝光被大气微粒散射)。同样的,当光在光纤中传输时,由于光纤中折射率分布不均匀,也会发生散射,主要有瑞利散射,布里渊散射与拉曼散射三种形式。



散射是光波与光纤介质的粒子相互作用的结果。瑞利散射中,入射光被散射后,波长、频率并未发生变化,是一种弹性散射;布里渊散射中入射光与光纤中声波场发生作用,会出现高于原入射光频率的光和低于原入射光频率的光。拉曼散射产生的结果与之类似,两者都属于非弹性散射。

分布式光纤传感技术(DOFS)就是通过采集光纤中散射光的信息进行测量的,可以分成如下几类: 



目前, OTDR 技术发展成熟,多用于集成光路的诊断和光通信网络故障的检测,但受探测光脉冲宽度及空间分辨率与动态范围之间矛盾的限制,难以同时满足较大动态范围和较高空间分辨率,不适用于高精度测量领域。在温度与应变传感领域,多使用基于布里渊散射的 BOTDR、BOTDA 及 BOFDA 技术,其中 BOFDA技术最高能实现 2cm 的空间分辨率,但整个测试系统十分复杂,测量时间较长。


OFDR 技术是利用扫频光源相干检测技术对光纤中的光信号进行检测的一项技术,由于不受空间分辨率与动态范围之间矛盾的限制,其同时具备空间分辨率高(光学测量可达 10μm) , 动态范围大, 测试灵敏度高等特点, 适用于短距离高精度监测领域如光器件内部剖析、土木工程模拟试验、车辆结构研究等。 


2、光学相干检测


光学相干检测的基本原理和无线电波外差探测原理基本一致,故又称光外差检测。它是利用光的相干性将包含有被测信号的探测光和作为基准的参考光在满足一定条件下进行混频,输出两光波的差频信号的一种检测技术,其基本原理如下图:



相干检测是一种间接检测技术,它把高频光信号转换到易于检测的中频信号上,具有转换增益高、检测能力强、信噪比高等优点,在光通信、测量领域有广泛的应用。 


3、 OFDR(光频域反射技术) 原理


OFDR(光频域反射技术)是一种基于光纤中瑞利散射的背向反射技术,光源发出的线性扫频光经耦合器分为两路,一路进入待测光纤中,在光纤各个位置上不断地产生瑞利散射信号,信号光是背向的,与另一路参考光耦合到探测器上进行相干混频。待测光纤不同位置,光频率不同,信号光与参考光的频差也不同。

通过频率测量可以获得待测光纤中各位置的光强。频率对应于光纤的位置,光强对应于此位置的反射率和回损。
 


光在光纤中向前传输时,当光纤中出现缺陷产生损耗时,不同位置处产生的瑞利散射信号便携带了这些损耗信息。对瑞利散射信号光进行频率检测,就能准确定位光纤沿线出现的熔接点、弯曲、断点等。OFDR 技术就是通过上述原理实现光纤链路的诊断。

另一方面,当待测光纤置于外界的温度场或应变场中,光纤受温度或应变影响,光纤内部折射率分布会有变化,相应的瑞利散射信号光的频率也会有变化,通过瑞利散射信号光的频率测量,可以对应外界温度场或应变场的变化。从而实现分布式光纤传感。 


OFDR的发展现状

 

OFDR主要有三种应用:光通信网络诊断、集成光路诊断和层析技术。这些应用的差别在于它们对OFDR系统的要求不同。而其技术差别主要在于光源部分的调制方式不同。


在层析技术中应用时,要求测量量程为几个毫米,测量精度为几十个微米。 


为寻求OFDR系统的商业化,国外许多研究单位对采用半导体激光器作为光源的OFDR系统进行了研究和探讨。他们尝试用各种方法对半导体激光器光源进行频域调制,以达到OFDR系统的要求,比如采用电流注入法、温度调制法、腔外光栅调制法或者腔外电光相位调制法等。


集成光路诊断需要比层析技术更大的测量量程。专家用磷化铟光波导结构得到了分辨率为50μm、测量范围为25mm的OFDR系统。


当调制光源时,注入电流的变化、残余振幅调制和非线性频率调啾会使系统的分辨率变差。用频率均衡器可以使频率惆啾线性化,优化系统的分辨率,使系统的分辨率达到1mm,并使测量量程达到1m。


光通信网络的诊断需要使用波长为1.3μm或1.55μm的光源,OFDR系统的测量量程必须大很多。用波长为1.32μm的ND: YAG激光器作为光源,得到了较长的相干长度,使测量范围达到了50km,实验中的分辨率达到了380m。用波长为1.55cm的Er-Yb激光器作为光源,并使用了掺Er光纤放大器,得到了50m的分辨率,测量量程则达到了30km。随着光源调频技术的日益成熟, OFDR的分辨率得到了很大的提高。运用SSB调制技术在量程大于5km时成功地得到cm量级的分辨率。


光频域反射计优点 

  

在光通信网络检测中包括了集成光路的诊断和光通信网络故障的检测等。前者一般只有厘米量级甚至毫米量级,后者的诊断一般使用波长为1.3μm或   1.55μm的光源,量程则达到了公里级,大的量程就需要大的动态范围和高的光源光功率。显然。OTDR分辨率与动态范围之间的矛盾不能很好地解决这个问题,而OFDR却可以满足.它具有高灵敏度和高的空间分辨率优点。 


1、高的灵敏度 


由于参考光的光功率比较大,一般能达到几十毫瓦。而光纤的背向瑞利散射光信号的功率很小。大约只是入射光的--45dB,从而可以得出结论。OFDR探测方式的灵敏度要远高于OTDR的探测方式。也就是说,在相同动态范围的条件下,OFDR需要的光源光功率要小得多。


2、高的空间分辨率 


空间分辨率是指测量系统能辨别待测光纤上两个相邻测量点的能力。空间分辨率高意味着能辨别的测量点间距短,即光纤上能测量的信息点就多,更能反映 整条待测光纤的特性。在OTDR系统中分辨率受探测光脉冲宽度的限制,探测光脉冲宽度窄,则分辨率高,同时光脉冲能量变小,信噪比减小。


OFDR系统中的空间分辨率可以对应为辨别待测光纤两个相邻测量点所对应的中频信号的能力,而辨别中频信号的能力与系统中所使用的频谱仪的接收机带宽密切相关。很明显,接收机带宽越小,则辨别两个不同频率信号的能力越强,同时引入的噪声电平也小,信噪比提高,故OFDR系统在得到高空间分辨率的同时也能得到很大的动态范围。


OFDR的限制因素与发展现状


1、光源相位噪声和相干性的限制

    

以上分析都是假定光源是单色的,而实际上的信号源都会产生较大的相位噪声并通过有限的频谱宽度表现出来。该相位噪声会减小空间分辨率并缩短光纤能够可靠测量的长度即光纤在一定长度之后测量到的数据就不能准确反映出散射信号的大小,从而不能准确分析光纤的传输特性。


2、光源扫频非线性的限制 


实际使用的激光器由于受到温度变化、器件的振动、电网电压的波动等条件的影响,会引起光源谐振腔位置的变化从而影响输出光波谱线的变化,引起扫频的非线性,会展宽OFDR测量系统中差频信号的范围,这限制了OFDR方式的空间分辨率的大小。 


3、光波的极化限制 


由于OFDR方式采用的是相干检测方案,很明显,假如信号光和参考光在光电探测器的光敏面上的极化方向是正交的,则该信号光所对应的光纤测量点的信息就会丢失。因此,必须保证光波极化的稳定性


光频域反射仪(OFDR)在军事装备中的应用


1、海上军事装备的应用


美国海军在80年代初就实施了开发大型新舰船用光纤区域网作为计算机数据总线的计划(AEGIS(宇斯盾)计划),他们意识到了将舰艇中的同轴电缆更换为光缆的巨大价值。1986年初,美国海军海洋系统司令部又在此基础上成立了SAFENET(能抗毁的自适应光纤嵌入网)委员会。并于1987年成立工作组指导制定了SAFENET-I和SAFENE-II两套标准并开发出了相应系统。这些系统已安装在CG 47 级导弹巡洋舰、DDG 51级导弹驱逐舰、“乔治·华盛顿号”航空母舰等舰艇上。随后实施的高速光网(HSON)原型计划,在实现了1.7Gb/S的第一阶段目标后,美国“小石城号”军舰上的雷达数据总线传输容量就达到了1Gb/S,并使原来重量达90吨的同轴电缆被0.5吨重的单模光缆所代替。1997年11月,美国在核动力航空母舰“杜鲁门号”(CVN75)上采用气送光纤技术完成了光纤敷设。后来又成功地在“企业号”(CVN 65)上进行了敷设。还计划在“里根号”(CVN 76)、“尼米兹号”(CVN68)及“USSWasp”号(LHD-1)上用气送光纤技术敷设光纤系统。其中“杜鲁门号”上所用光纤达67.58kM。


在上述舰载高速光纤网、采用光纤制导的武器弹药或使用光纤传输信息的局部装置中,存在着大量的光纤连接头或光纤弯曲等现象,网络链路结构复杂、光器件数目多;网络工作环境恶劣、温度变化大、振动冲击严重;对这类网络的可靠性检测事关国家安全,需要在维护检修时具备很高的故障分辨率并能定位到器件内部。OTDR技术显然不能满足上述要求,而OFDR则具备满足这一应用需求的能力。OFDR可以有效的检测出链路内各个光器件的反射及损耗特性,OTDR则因距离分辨率低而难以有效检测该链路中光器件的状况。表明OFDR能够有效地高精度检测中短距离专用光纤网络中光纤和器件的故障。



2、航空航天装备的应用


载人航天、大型飞机作为国家科技实力的标志,得到迅速发展,我国也将之列入中长期科技发展规划重大专项和重大科学工程。大型飞机、载人航天的发展,必然对其内部通信网络的传输容量、抗干扰能力以及体积重量等提出新的要求,光纤以其传输带宽、抗电磁干扰能力、以及质量轻、体积小、抗腐蚀、无火灾隐患等独特优越性,使其成为支持该发展需求的最佳技术选择。美国自1995年波音777首次成功使用光纤局域网(LAN)技术之后,就提出了"航空电子光纤统一网络"的概念,掀起了航空电子光纤网络技术研究的热潮。构建基于光纤技术的内部通信网络,成为这类专用通信网络的发展趋势,也为光纤通信技术开辟了新型的应用领域。然而,这类网络的可靠性检测是一个没能很好解决的问题。这类网络往往事关人的生命乃至国家安全,对网络的可靠性和安全性要求极高,必须进行严格细致的检测。


网络的链路距离短(几十米至数公里),结构复杂、光器件数目多,要求故障精确定位到器件的内部。因此,需要定位精度能够达到毫米量级、距离范围能到数公里的光纤链路检测设备,光时域反射技术(OTDR)显然不能满足上述测量要求,而OFDR则具备满足这一应用需求的能力。


目前国内军机的通信系统普遍采用了“1+N+1”的模式,“1”表示交换机机箱内的多模光纤长度,“N”表示两个机箱之间的光缆长度。



3、陆地军事装备的应用


在陆上的军事通信应用中的战略和战术通信的远程系统、基地间通信的局域网等因为光缆通信距离较长,不需要用到高分辨率的OFDR。

由于光纤传输损耗低、频带宽等固有的优点,光纤在雷达系统的应用首先用于连接雷达天线和雷达控制中心,从而可使两者的距离从原来用同轴电缆时的300m以内扩大到2~5km。用光纤作传输媒体,其频带可覆盖X波段(8~12.4GHz)或Ku波段(12.4~18GHZ)。光纤在微波信号处理方面的应用主要是光纤延迟线信号处理。先进的高分辨率雷达要求损耗低、时间带宽积大的延迟器件进行信号处理。传统的同轴延迟线、声表面波(SAW)延迟线、电荷耦合器件(CCD)等均已不能满足要求。光纤延迟线不仅能达到上述要求,而且能封装进一个小型的封装盒。用于相控阵雷达信号处理的大多是多模光纤构成的延迟线。


在上述的中短距离的应用中,特别是封装在小盒里的光纤延迟线,维护时只有使用高分辨率的OFDR才能检测出是否有潜在故障。



光通信、层析技术和集成光学的发展,越来越需要具有高空间分辨率的测量技术。OFDR作为一种具有广泛应用前景的高空间分辨率测量技术,正越来越受到研究者的重视。随着国内科学技术的发展,有关OFDR的研究必将会广泛地被引起人们的重视并得以开展。

- END -


   


制造业的未来是智能化,智能化的基础就是传感器;互联网的方向是物联网,物联网的基石也是传感器;

 
《传感器技术》汇编了一套各种传感器的基础知识,介绍了各种传感器的原理。

【点击蓝色标题,获取文章】

1、一文读懂MEMS传感器

2、一文读懂接近传感器

3、一文读懂磁传感器

4、一文读懂流量传感器

5一文读懂压力传感器的原理及分类

6、一文读懂加速度传感器

7一文读懂超声波传感器

8一文读懂位移传感器

9、一文读懂光电传感器

10、一文读懂光纤传感器

11一文读懂温湿度传感器

12一文读懂图像传感器

13一文读懂生物传感器

14一文读懂霍尔传感器

15一文读懂距离传感器

16一文读懂氧传感器

17一文读懂风向风速传感器

18一文读懂纳米传感器

19一文读懂红外传感器

20 一文读懂红外传感器之热成像仪

21一文读懂气体传感器

23汽车传感器今日谈

24一文读懂手机传感器

25一文读懂医疗传感器

26一文读懂化学传感器

27一文读懂角速度传感器(陀螺仪)

28一文读懂换能器

29一文读懂旋转编码器

30一文读懂变速器

31一文读懂振动传感器

32一文读懂电容传感器

33一文读懂电涡流传感器

34一文读懂电感式传感器

35一文读懂光栅传感器

36一文读懂压电式传感器

37一文读懂烟雾传感器

38一文读懂电阻式传感器

39无线网路传感器详解

40MEMS传感器市场状况及主要厂商

41图像传感器的市场状况和主要厂商

42气体传感器的市场状况及主要厂商

43指纹传感器的市场状况和主要厂商

44汽车MEMS传感器的市场状况和主要厂商

为您发布产品,请点击“阅读原文”

传感器技术 制造业的未来是智能化,智能化的基础就是传感器; 互联网的方向是物联网,物联网的基石也是传感器; 关注传感器技术,获得技术资讯、产品应用、市场机会,掌握最黑科技,为中国工业导航。
评论
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 155浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 71浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 54浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 59浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦