深度分析:BGA封装与PCB差分互连结构的设计与优化

电源Fan 2021-04-22 00:00


摘要:随着电子系统通信速率的不断提升,BGA封装与PCB互连区域的信号完整性问题越来越突出。


针对高速BGA封装与PCB差分互连结构进行设计与优化,着重分析封装与PCB互连区域差分布线方式,信号布局方式,信号孔/地孔比,布线层与过孔残桩这四个方面对高速差分信号传输性能和串扰的具体影响。


利用全波电磁场仿真软件CST建立3D仿真模型,时频域仿真验证了所述的优化方法能够有效改善高速差分信号传输性能,减小信号间串扰,实现更好的信号隔离。







近年来,球栅阵列(BGA)封装因体积小,引脚多,信号完整性和散热性能佳等优点而成为高速IC广泛采用的封装类型。


为了适应高速信号传输,芯片多采用差分信号传输方式。随着芯片I/O 引脚数量越来越多,BGA焊点间距越来越小,由焊点、过孔以及印制线构成的差分互连结构所产生的寄生效应将导致衰减、串扰等一系列信号完整性问题,这对高速互连设计提出了严峻挑战。


目前国内外学者对于板级信号完整性问题的研究仍多集中于水平传输线或者单个过孔的建模与仿真,频率大多在20 GHz以内。对于包括过孔、传输线的差分互连结构的传输性能以及耦合问题研究较少。并没有多少技术去减少封装与PCB互连区域垂直过孔间的串扰。

文章针对高速BGA封装与PCB差分互连结构进行设计与优化。着重分析改进差分布线方式,信号布局方式,信号孔/地孔比,布线层与背钻这四个方面对改善高速差分信号传输性能和串扰的具体影响。利用全波电磁场仿真软件CST微波工作室建立3D仿真模型。仿真频率达到40 GHz,在时域和频域同时验证了所述优化方法的有效性。




1、物理模型


1.1 差分互连结构

在高速信号传输中,差分信号因具有减小轨道塌陷和电磁干扰、提高增益、消除共模噪声和开关噪声干扰等优点而被广泛使用。高速差分信号通过IC封装到达PCB板各层进行传播,为了实现BGA封装基板与PCB各层的电气连接,由水平差分线和垂直差分过孔共同构成了差分互连结构,如图1所示。


图1 BGA封装与PCB板垂直互连结构

1.2 仿真环境及参数设置

本文采用的仿真环境为全波电磁场仿真软件CST微波工作室,集时频域算法为一体,含多个全波及高频算法,可仿真任意结构、任意材料下的S 参数,并可以与电路设计软件联合仿真。


几种优化方案均由CST微波工作室建立三维物理模型,PCB 的层叠结构如图2 所示,PCB板共12层,第1,3,5,8,10,12层为信号层(走线层),第2,4,6,7,9,11 层为电源或地层。板厚为97.6 mil,板材介电常数3.8,损耗正切0.012。


0.8 mm间距BGA扇出过孔间距为31.4 mil,过孔孔径8 mil,线宽/线距5 mil,差分走线在第10层。


图2 PCB板层叠结构剖面图



2、优化与设计


从四个方面进行设计优化,以改善高速差分信号的传输性能及信号间串扰。分别为差分布线方式,信号分布方式,信号孔/地孔比,布线层选择与过孔残桩。CST仿真的结果以S 参数的形式体现,仿真频率达40 GHz,在时域和频域同时验证所述优化方法的有效性。

2.1 布线方式

差分信号从过孔引出时,不同的布线方式会对差分信号的传输特性有很大的影响,如果传输线不能等长等距,就会引起信号失真,产生共模噪声。


如图3所示,信号从过孔引出时分别采取三种布线方式,0°,90°转角,45°转角,每对差分过孔周围有两个隔离地孔。布线在PCB板第10层。


图3 三种差分线引出方式

图4是以上三种不同布线方式的插入损耗。显然,种水平对称的方式传输性能。差分信号重要的就是等长等距,等长的目的是要确保时序的准确与对称性,两条传输线上的任何时延差或错位,都会导致差分信号失真,并使部分差分信号变成共模信号,产生电磁干扰。


等距的目的是保持差分阻抗的一致性。45°和90°转角在布线时都无法做到的等长等距,产生相位差和共模噪声。


图4 不同布线方式下差分对的插入损耗

图5和图6分别从频域和时域展示了三种布线方式所产生的共模噪声。不论是45°转角还是90°转角,产生的共模噪声都比0°高得多,而45°转角布线要略优于90°转角。


图5 不同布线方式下共模噪声频域比较


图6 不同布线方式下共模噪声时域比较


根据经验法则,为了把错位维持在信号上升边10%以内,要求两线长度匹配至上升边空间延伸的10%以内。这种情况下,对走线总长度的匹配要求如下:

ΔL =0.1×RT×v

式中:ΔL 表示为错位维持在上升边的10%以内,两条走线之间的长度偏差;RT表示信号的上升边;v 表示差分信号的传播速度。如果信号的传播速度大致为6 in/ns,上升边为100 ps,那么两条走线的长度应匹配至其偏差小于60 mil。


由于高速信号上升时间越来越短,留给缘于走线长度偏差的错位预算在不断变小,使得走线长度之间的匹配显得愈加重要。

因此在实际应用中,应尽量采用0°这样水平对称的方式布线,来达到等长等距的目的。

2.2 信号分布方式

BGA封装管脚在扇出时通过过孔连接至PCB板其他各层,几十对差分对同时高密度、长线并行,相邻的传输线由于电场和磁场的作用(耦合电容/耦合电感),一对差分线传输的信号会对相邻的传输线产生串扰[9]。


由于BGA焊点的排列是固定的,因此焊盘和过孔的位置取决于焊点的分布,合理的BGA管脚信号布局可以改善差分对之间的串扰。不同信号分布方式见图7。


图7 不同信号分布方式

如图7所示的两种布局方式:3对信号横向水平布置;3对信号正交布置。


每对信号周围各有两个隔离地孔。中间为受扰线,两边为干扰线,根据走线将3对差分对定义成6个差分端口,D1~D3为BGA扇出端,通过观察D4,D6端口对D2端口的远端串扰来分析相邻通道的串扰情况,由于两边对称,只需观察D4端口对D2端口的串扰。差分对远端串扰比较如图8所示。


图8 不同信号分布方式下差分对远端串扰比较

由图8所示的结果可以看到,信号正交布局时,由于孔?孔之间距离增大,孔?孔耦合减小,从端口D4到端口D2的远端串扰低于水平布局时的远端串扰。


由表1可知,优化后的远端串扰比原设计在大于5 GHz频带内有5~15 dB的改善。图9从时域也验证了正交布局的优越性。优化后的设计瞬态峰值噪声比原设计降低了10 mV,如表1所示。


图9 不同信号分布方式下差分对远端串扰时域响应比较


表1 远端串扰比较

2.3 信号孔/地孔数量比

由于在设计中BGA焊点的间距是固定的,一味增加信号之间的距离来降低串扰不太可能,简单的方法就是在重要信号孔周围增加地孔隔离。


以下四种方案信号孔/地孔(S G) 比分别为1∶1,1∶2,1∶3,1∶4,信号布局方式采取第2.2节中正交布局方式,如图10所示。


图10 不同S G 比信号布局

四种方案远端串扰比较如图11所示,S G 比为1∶2时,差分信号的远端串扰要比1∶1时有很大改善。由表2可知,在5~30 GHz频段,S G 比1∶2比1∶1远端串扰降低了8~17 dB。

在重要信号孔周围增加地孔隔离,能够缩短地回流路径、降低信号过孔的电感不连续性,因此可以在一定程度上改善串扰,但是很快就会饱和,S G 比1∶4与1∶3时差别已然不大,远端串扰的改善很有限。


4种方案远端串扰的时域仿真结果如图12所示,可以得到与频域同样的分析结果。从时域结果可得到4种方案的瞬态峰值噪声,S G 比1∶1时高达22 mV,1∶2时则很快降低到6 mV,1∶3和1∶4时均在1.6 mV左右,相差不到0.03 mV,如表2所示。


图11 四种方案远端串扰比较


图12 四种方案远端串扰时域响应比较


表2 远端串扰比较

由于BGA封装引脚数量有限,并不能无上限地增加地孔数量。在串扰影响和引脚数量的权衡之下,20 GHz以内S G 比1∶2与1∶3区别不大,选择1∶2即可。20 GHz以上时,S G 比1∶3要明显优于1∶2。

2.4 布线层选择与过孔Stub的影响

在重要信号孔周围增加地孔隔离是降低串扰简单的方法,但是很快就饱和了,而且这样很难达到一个理想的屏蔽。


在封装与PCB互连区域,高速差分对之间除了孔的耦合,线耦合也都是引起串扰的重要因素。此刻,除了考虑之前的三个方面影响,还应分析和研究布线层以及过孔残桩对串扰的影响。


图13的情况,三个差分对分别布在不同层且具有不同过孔Stub长度,信号正交布局,每对差分过孔周围设置6个隔离地孔。图13(a)中3个差分对都布在PCB第10层,靠近底层。图13(b)中两侧的干扰线从第10层移到第3层,且将长Stub背钻59.1 mil。


这样两边干扰信号与中间受扰信号之间孔耦合的垂直长度显著减少。图13(c)与图13(b)恰好相反,中间的受扰线布在第3层并且背钻,两边干扰线布在第10 层。图13(d)中间受扰线布在第10层,两边干扰线布在第3层且保留长Stub。

远端串扰的频域比较如图14 所示,与方案(a)相比,方案(b)减小了两边干扰信号过孔的垂直长度,孔耦合减少,而且3对差分线不在同一层,线?线之间耦合也减小了,串扰会有很大改善。


由表3 可知,在5~30 GHz频带内,方案(b)比方案(a)远端串扰改善了4~12 dB。方案(c)与(b)的区别在于(c)有多余的孔线耦合,(c)中受扰线放在第3层且背钻,干扰线放在第10层,虽然孔耦合也可以减小,但是两边长长的干扰信号孔会对中间差分线产生线干扰。


而方案(b)中,由于干扰信号孔背钻,受扰信号在经过时,并没有长Stub对差分线的干扰。由此,方案(b)的串扰是的。如果没有背钻,如方案(d),虽然三对信号差分线不在同一层,但长长的Stub不仅会影响阻抗的连续性,使自身差分信号产生谐振,还会增大相邻差分信号之间的串扰,甚至都不如方案(a)将信号都布置在靠近底层。


图14 四种方案远端串扰比较

从时域仿真结果中可以得到与频域同样的分析结果,如图15所示。由表3可知,四种方案的瞬态峰值噪声,方案(b),方案(d)。因此,在今后的设计中,为避免过孔长Stub对信号的干扰,差分线应尽量靠近PCB板底层布线,多走内部带状线。


几对并行的差分信号可分别布置在不同信号层以降低串扰,但要注意布在浅层的信号过孔一定要背钻。


图15 四种方案远端串扰时域响应比较


表3 远端串扰比较



3、实验结果比较与分析


通过对以上仿真结果进行比较与分析,可以得到如下设计和优化建议:

(1)差分信号从过孔引出时,为满足等长等距的要求,应尽量采用水平对称的布线方式,以达到的传输性能和的共模噪声。如果布线时无法做到的水平对称,45°转角布线要优于90°转角布线。

(2)BGA封装信号引脚布局采用正交方式,可充分降低差分对之间串扰的影响。与水平布局相比,正交布局在5~30 GHz频带内串扰有5~15 dB的改善。

(3)在重要信号孔周围增加地孔隔离,可以在一定程度上改善串扰,但是很快就会饱和,由仿真结果可知:20 GHz以内给每一对信号孔周围布置4个地孔,就可以很好的降低差分信号间的串扰,满足信号完整性要求。20 GHz以上时,可在某些高速信号周围布置6个隔离地孔,以改善信号之间的串扰。

(4)在选择布线层时,为避免过孔长Stub对信号的干扰,差分线应尽量靠近PCB板底层布线,走内部带状线。如果很多对差分对并行传输,几对差分信号可分别布置在不同信号层以降低串扰,但要注意布在浅层的差分信号过孔一定要背钻。



4、结论


本文通过对高速BGA封装与PCB差分互连结构的优化设计,利用CST全波电磁场仿真软件进行3D建模,分别研究了差分布线方式、信号布局方式、信号孔/地孔比、布线层与过孔残桩这四个方面对高速差分信号传输性能和串扰的具体影响。

时频域仿真结果表明,所述优化方法能够有效改善高速差分信号传输性能,减小差分信号间串扰,实现更好的信号隔离。


为保证高速信号传输系统的信号完整性提供了重要依据,对于高速PCB设计具有一定的指导意义。

END


版权归原作者所有,如有侵权,请联系删除。

推荐阅读

滤波器参数还在盲调?耐心看完这篇!

21种表面处理工艺,你都知道吗?

一文读懂电子电路图

电源Fan 了解行业动态,学习深度技术,观察微小事物——电源Fan,一个涨知识的公众号。
评论
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 44浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 93浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 137浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 209浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 152浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 83浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 160浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 47浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 108浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 117浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 115浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 195浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 101浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 51浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 92浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦