龙芯的全新自主指令集到底强在何处?

嵌入式资讯精选 2021-04-20 00:00

近日,龙芯推出自主指令系统架构:LoongArch,本文将从龙芯官方的材料中解读出一些干货内容,供读者们参考。

青出于蓝而胜于蓝,那些年 MIPS 教给龙芯的事

龙芯的全新自主知识产要指令集 LA64,虽然目前已经演化出自己的风格了,但是 LA64 与 MIPS 之间的继承关系还是非常明显的。MIPS(Microprocessor without interlocked pipelined stages),中文翻译是“无内部互锁流水级的微处理器”,其关键思想是尽量利用软件办法避免流水线中的问题,而不使用硬件锁,后面我们也会介绍龙芯本次有一个创新点就是取消了延时指令槽,不过延时槽的提出在二三十年前还是非常依靠的。

1981 年斯坦福大学的第十任校长,冯诺依曼奖与图灵奖的双料得主,约翰·轩尼诗教授做出了世界第一款 MIPS 架构的处理器,现在轩尼诗教授又成了谷歌母公司 Alphabet 的董事长,能力水平业界公认,而且还有一点鲜为人知的优点,就是桃李满天下,现任英特尔 CEO 帕特.基辛格在斯坦福念研究生时,当时的导师就是轩尼诗教授,可以说这是一位稳进计算机历史前五名的大神级人物。

没有争议,MIPS 世界上第一款真正实践了精简指令思想的处理器。上个月才将MIPS 收入麾下的 RISC-V,可是直到 30 年后的 2010 年才诞生,而与 MIPS同场竞技三十年的 ARM,也是直到4年后才问世。

后来 MIPS 先打入了 Play Station,性能强悍被人广传颂。后来又在工作站也就是目前我们所说的服务器领域大显身手,1997 年 NEC 的超算 Cenju-4 是 MIPS 的巅峰之作,这款超算具有很多非常超前的设计,而 MIPS 就是他的核心。

为应对 MIPS 系列芯片带来的冲击,2000年左右的英特尔上来推出 Intel Architecture 64 架构的安腾(Itanium)系列服务器级 CPU,我们知道由于历史原因 X86 系列的 CPU 始终都要保持向后兼容,也就是为 286 编写的程序,也要能完美运行在 486 上,不过 286 是 16 位而 486 却是 32 位,让两个位长都不一样的 CPU 运行同样的程序,还不出问题,这可真是难为英特尔的程序员了,X86 系列 CPU 经常要在各种保护模式、实模式之间来回横跳,没有过硬的技术功底,想弄明白 X86 的系统是如何加载引导的都十分困难。

不过正如龙芯在他们的宣传材料中提到的一样,安腾架构目前已经失败了,同一家公司的指令集如果不能前后兼容,那后果是灾难性的。因此我们看到龙芯没有放弃与MIPS兼容,甚至推出了二进制转译指令集,以支持将 MIPS、Arm、及X86 的应用,全部翻译成龙芯的指令,并使之性能为达到原生程序的100%、90%、80% 以上。

在了解到这点以后,下面笔者借龙芯本次宣传材料上公开的汇编代码,与对应的 ARM 代码进行对照,带大家近距离了解一下龙芯。

龙芯 64 近距离接触

在本次龙芯的发布材料中公开了以下代码

Int a; Int test(void){  Return a;  }

对应的汇编语言。

为了让大家更好的理解龙芯的指令集,笔者在华为的鲲鹏平台上用 ARM 版本的 gcc 编译了上述代码。

1. 首先安装反汇编工具 objdump 命令如下:

yum install -y binutils

2.  编写源文件 test.c,输入以下内容

Int a;Int test(void){return a;}

3. 编译 .a 库文件

aarch64-redhat-linux-gcc -g -o test test.c

4. 查看对应汇编文件

objdump -S test

对应代码如下:

00000000 <test>:int a;int test(void){return a;}0: e52db004 push {fp} ; (str fp, [sp, #-4]!) 4: e28db000 add fp, sp, #0  8: e59f3010 ldr r3, [pc, #16] ; 20 <test+0x20>  c: e5933000 ldr r3, [r3]  10: e1a00003 mov r0, r3  14: e28bd000 add sp, fp, #0  18: e49db004 pop {fp} ; (ldr fp, [sp], #4)  1c: e12fff1e bx lr  20: 00000000 .word 0x00000000

以上的汇编语言大致过程解析如下:

首先是push {fp} ; (str fp, [sp, #-4]!),其中SP是栈寄存器,首先将栈顶向上(sp-4)的地址传给fp然后将fp入栈。接下来进行通过add fp, sp, #0进行sp的设置,再把r3传给pc后的16位地址,mov r0,r3其中就是return a了。add sp, fp, #0和pop {fp} ; (ldr fp, [sp], #4)其实是开头栈祯设置的反向操作,也就是恢复了调用现场。

这段c代码对应的龙芯汇编语言代码如下:

LA code

0 : addi . d $r3 , $r3 ,−16 4 : s t . d $r22 , $r3 , 8  8 : addi . d $r22 , $r3 ,16  c : pcaddu12i $r12 , 0  10: l d . d $r12 , $r12 , 0  14: l d p t r .w $r12 , $r12 , 0  18: move $r4 , $r12  1c : l d . d $r22 , $r3 , 8  20: addi . d $r3 , $r3 ,16  24: j i r l $r0 , $r1 , 0

根据龙芯的官方文档其R3寄存器就是 sp寄存器,R22就是fp寄存器。因此其实现逻辑可以说既保持了与MIPS兼容又吸引了其它RISC风格的优点。而且MIPS在指令空间也真算是精打细算,为今后扩展到一些其它比如SIMD类的指令集做好准备。


继承、优化、升级

根据龙芯的介绍,我们看到龙芯其它的储保持 RISC 风格、更多可用寄存器等特点在没看到实物之前我都很难评价,唯一可以说的是取消了延时指令槽,这可能是一个比较独特的点。

而延时指令槽的产生要从指令流水线说起。一般来说想要执行一条机器指令,需要将任务分解成取指、译码、取操作数、执行以及取操作结果等若干步骤,而每个步骤都需要一次晶体震荡才能推进,因此在流水线技术出现之前执行一条指令至少需要5到6次晶体震荡周期才能完成

那么针对这样的问题芯片设计人员就提出了参考工厂流水线机制的想法,因为取指、译码这些模块其实都是独立的,完成可以在同一时刻并行手,那么只要将多条指令的相关步骤放在同一时刻执行,比如指令1取指,指令2译码,指令3取操作数等等步骤同时执行,

只要指令流水线就建立成型,自此以后每个震荡周期T,都可以取到一个指令的结果了,也就是说平均每条指令就只需要一个震荡周期就可以完成。这样就能大幅提升 CPU 的运算速度。不过这也有一个缺点,就是要求 CPU 必须知道每条指令的执行顺序,如果预测错了流水线上某一条指令的执行顺序,那么指令流水线上就会产生大量气泡,如下图:

比如 CPU 在 T6 时刻发现指令 4 不应该被执行,那么 T6 到 T8 有关指令 4 的相关操作就会变成气泡一样的废操作,从而大幅度降低 CPU 的执行效率。

而 MIPS 的延时槽所要做的就是分析指令间的关联关系,在跳转指令时,找出一条不受判断跳转影响的指令来执行,比如以下代码中 int b=0 就是一条典型的与接下来的条件判断没有关系的。

 Int test(void){  Int b=0//条件跳转无关代码   If (a>0){  //Do some thing without b;  }  else{  //Do some thing else with out b;  }


在 MIPS 中尽可能用延时槽指令填充流水线以避免气泡过多产生,不过我们看到现代 CPU 的方案在分支预测上已经有了长足的进步,包括 c 语言中也提供了likely修饰符来帮助 CPU 进行分支预测,用 likely 修饰符不改变任何逻辑,只是告诉 CPU 本分支被执行的可能很大。因此目前延时槽已经有点废操作的感觉了。龙芯把这块拿掉可以说是恰逢其时吧。

以上就是我能 Get 到的一些关键信息,不一定准确仅供参考。

1.其实,机器人的发展与嵌入式系统密不可分~

2.HarmonyOS到底是不是Android套皮?

3.代码防御性编程的十条技巧~

4.几种基于RTOS的实用工具

5.单片机编程如何查看版本之间代码的不同?

6.从硬件转向软件设计,请牢记这十大技巧!

免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。

嵌入式资讯精选 掌握最鲜资讯,尽领行业新风
评论
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 147浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 92浏览
  • 故障现象 一辆2007款法拉利599 GTB车,搭载6.0 L V12自然吸气发动机(图1),累计行驶里程约为6万km。该车因发动机故障灯异常点亮进厂检修。 图1 发动机的布置 故障诊断接车后试车,发动机怠速轻微抖动,发动机故障灯长亮。用故障检测仪检测,发现发动机控制单元(NCM)中存储有故障代码“P0300 多缸失火”“P0309 气缸9失火”“P0307 气缸7失火”,初步判断发动机存在失火故障。考虑到该车使用年数较长,决定先使用虹科Pico汽车示波器进行相对压缩测试,以
    虹科Pico汽车示波器 2025-01-15 17:30 65浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 93浏览
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 101浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 90浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 95浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 556浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 100浏览
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 68浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 521浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,与汽车技术领先者法雷奥合作,采用创新的开放系统协议(OSP)技术,旨在改变汽车内饰照明方式,革新汽车行业座舱照明理念。结合艾迈斯欧司朗开创性的OSIRE® E3731i智能LED和法雷奥的动态环境照明系统,两家公司将为车辆内饰设计和功能设立一套全新标准。汽车内饰照明的作用日益凸显,座舱设计的主流趋势应满足终端用户的需求:即易于使用、个性化,并能提供符合用户生活方式的清晰信息。因此,动态环境照明带来了众多新机遇。智能LED的应用已
    艾迈斯欧司朗 2025-01-15 19:00 59浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 112浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 128浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦