ALD在半导体先进制程的应用 | 技术专栏

说明:若有考虑不周,欢迎留言指正。

© travelstock44/Alamy


作者邱明君,杜伟伟,周俊飞,浙大化工学院赵俊杰老师课题组在读研究生。



原子层沉积在半导体先进制程的应用

       随着集成电路工艺技术的不断提高,晶体管的特征尺寸及刻蚀沟槽不断减小,沟槽及其侧壁的镀膜技术面临严峻的挑战,物理气相沉积(PVD)及化学气相沉积(CVD)工艺已经无法满足极小尺寸下良好的台阶覆盖要求,而控制纳米级别厚度的高质量超薄膜层制备也成为技术难点。

       原子层沉积(ALD)是一种可以将物质以单原子膜的形式,一层一层镀在基底表面的先进沉积技术。一个ALD循环包括两个先后进行的半反应(图1)。在一定的真空环境下,前驱体和共反应物交替地通入反应腔体,饱和吸附并在衬底表面发生化学反应形成单原子层。每个半反应间通入惰性气体进行清洗,确保完全除去过量的反应物和生成的小分子副产物。理论上,经过一个循环工艺,基底表面便镀上了一层单原子膜。通过增加循环次数,原子层将依次沉积在表面上,形成薄膜。

       由于前驱体和共反应物的化学吸附(化学反应)自限制性,运用ALD技术可以大面积沉积均匀无孔的超薄膜,在亚纳米尺度上精确控制膜厚,并且在高深宽比、形状复杂的结构中具有优异的保形性。ALD沉积薄膜的温度窗口很宽,反应对生长温度并不敏感,因此它可以适应不同温度环境下的薄膜制备。鉴于ALD的工艺特点和沉积薄膜的诸多优势及特征,近年来获得了研究人员和企业各界的广泛关注,尤其是在半导体产业发挥越来越重要的作用。

 



图1  单个原子层沉积工艺的循环过程[1]

 

       目前,对于金属、金属氧化物、氮化物、碳化物、硫化物、氟化物的原子层沉积研究卓有成效。ALD在半导体先进制程中主要的应用包括金属栅、栅介质层和互连线扩散阻挡层加工工艺三个方面。


金属栅:

       在新一代制程中,原有的半导体多晶硅栅极将被金属取代以消除层间损耗,而此处金属沉积可选用ALD工艺完成。

  1.  P型半导体

    1.1  Ru

       Ru作为P型半导体栅极的ALD工艺相对成熟,主要是在NH3等离子体的还原作用下将前驱体材料包括RuCp2(Cp=环戊二烯基)、Ru(EtCp)2(Et=乙基)还有Ru(od)2(od=辛二酮)、Ru(thd)3(thd=2,2,6,6-四甲基-3,5-庚二酮)在NH3还原作用下生成金属Ru或者是在O2的作用下将前驱体氧化为RuOx[1-2]。虽然Ru前驱体种类众多,但是由于Ru金属本身属于惰性材料,所以一旦吸附在硅片背面会很难除去。然而在实际生产中,CMP过程会不可避免地诱导金属栅极在背面的污染,对CMOS生产的前端非常不友好,所以Ru作为金属栅极的应用受到了限制。

    1.2TiN

      TiN是P型半导体栅极的理想材料,不仅电阻率低、工艺兼容性好,而且还和栅极介质层HfO2有良好的热稳定性。1988年,Hiltunen等人率先对ALD沉积TiN的工艺进行了研究,通过使用TiCl4作为前驱体NH3做共反应物,500℃下能够在玻璃上均匀沉积多晶TiN,但是沉积速率只有0.02nm/循环[3]。此外,还有研究使用TiI4作为前驱体,和TiCl4相比其沉积温度能够下降至350℃,其沉积速率也有明显改善[4]。但是如果要实际应用在CMOS的工艺,以上的沉积速率还远远不够,主要原因在于共反应物NH3提供的N成分远远不够Ti-N键的连接,所以研究者们开发了作为TEMAT(Ti[N(C2H5CH3)2]4)新型前驱体,使反应窗口能够降低至150-220℃,沉积速率也提高为原先的10倍[5]。以上的研究为TiN作为金属栅极提供了良好的技术基础,迄今仍然主要使用上述提到的前驱体作为研究方向。

     2. N型半导体

      和P型半导体相比,用ALD沉积N型半导体更为困难,最早的研究开始于2007年,Triyoso等人用PEALD沉积了TaCy薄膜,在此基础上开展了对TiAlC和TaAlC的研究。 

      TiAlC一般是以TiCl4作为作为Ti前驱体,以TMA (三甲基铝)作为Al前驱体,一个完整的沉积过程由脉冲TiCl4--吹扫N2--脉冲TMA--吹扫N2组成,最终能够形成粗糙度只有0.33nm的无定形膜层,通过C-V测试可知缺陷很少,唯一的缺点是和高性能nMOSFETs相比,这种方法得到的EWF shift很小。通过把Al前驱体从TMA更换为TEA(三乙基铝),TEA提供了更多的β-H能够有效清除H2,提高Al的生成效率,因而被广泛使用[6]。

TaAlC一般是用TaCl5作为作为Ti前驱体,TMA、TEA作为Al前驱体,从表一可看出,两种材料的沉积工艺和性能都非常相似[7-8]。

表一:TiAlC和TaAlC层的工艺对比



参考文献:

[1]Aaltonen,T. Atomic Layer Deposition of Noble Metal Thin Films. Ph.D. Thesis, Universityof Helsinki,
Helsinki, Finland, 2005.
[2]Park, K.J.The Atomic Layer Deposition of Noble Metals for Microelectronics Applications.Ph.D. Thesis,
North Carolina State University, Raleigh, NC, USA, 2010.

[3]Ritala,M.; Leskelä, M.; Rauhala, E.; Haussalo, P. Atomic Layer Epitaxy Growth of TiNThin Films.
J. Electrochem. Soc. 1995, 142, 2731–2737.
[4]Ritala, M.;Leskelä, M.; Rauhala, E.; Jokinen, J. Atomic Layer Epitaxy Growth of TiN ThinFilms from Til4 and NH3. J. Electrochem. Soci. 1998, 145, 2914–2920.
[5]Jeon, H.;Lee, J.-W.; Kim, Y.-D.; Kim, D.-S.; Yi, K.-S. Study on the characteristics ofTiN thin film deposited by the atomic layer chemical vapor deposition method.J. Vac. Sci. Technol. A 2000, 18, 1595–1598.

[6]Triyoso,D.H.; Gregory, R.; Schaeffer, J.K.; Werho, D.; Li, D.; Marcus, S.; Wilk, G.D.Atomic layer deposited TaCy metal gates: Impact on microstructure, electricalproperties, and work function on HfO2 high-k
dielectrics. J. Appl. Phys. 2007, 102, 104509

[7]Xiang, J.; Li, T.; Wang, X.; Du, L.; Ding, Y.; Wang, W.; Li,J.; Zhao, C. Thermal Atomic Layer Deposition of TaAlC with TaCl5 and TMA asPrecursors. ECS J. Solid State Sci. Technol. 2016, 5, P633–P636.
[8]145. Xiang, J.; Wang, X.; Li, T.; Gao, J.; Han, K.; Yu, J.; Wang, W.; Li,J.; Zhao, C. Investigation of Thermal Atomic Layer Deposited TaAlC with LowEffective Work-Function on HfO2 Dielectric Using TaCl5 and TEA as Precursors.ECS J. Solid State Sci. Technol. 2017, 6, P38–P41.


栅介质层:

       在集成电路产业史上,为了追逐摩尔定律,MOSFET(图2)的特征尺寸不断缩小,工作电压也不断降低。为了抑制短沟道效应,减小栅介质层对提高栅电容以提高栅对沟道的控制能力,调节阈值电压起着至关重要的作用[2]。在传统MOS器件中,通过简单的氧化工艺可以在Si衬底上得到一层所需厚度的SiO2层作为栅介质层。当集成电路器件特征尺寸进入180nm时,栅氧化层的厚度小于3nm。由于P型掺杂多晶硅栅的硼穿透效应日益严重(硼在SiO2介质中属于快扩散物质),半导体业界在氧化工艺中加入NO、N2O和NH3等含氮气体以形成更致密的SiON介质层改善纯SiO2的不足。

       随着技术节点的跟进,当制程工艺特征线宽要求小于45nm,相应的SiO2层厚度将缩小至1nm以下,此时量子隧穿效应的影响将急剧增加——以NMOS为例,衬底的电子以量子形态大概率地穿过栅介质层进入栅,导致栅漏电十分严重。通过改善氧化工艺提高介质层氮含量以及减小SiO2厚度的方法继续缩小MOS器件难以为继,开发新工艺制备新材料以代替SiO2和SiON十分重要。

在集成电路的发展历程中,选用比SiO2介电常数(3.9)更高的高k材料成为解决这一技术瓶颈的关键一招。高k材料的选择除了具有高的介电常数外,还需满足宽禁带、与衬底材料间足够的能带偏移量和低的界面态。

       绝大多数高k材料的加工工艺都依赖于原子层沉积技术。此前,基于ALD沉积的一些重要研究包括TiO2、HfO2、Al2O3、ZrO2、Ta2O5,稀土元素氧化物和一些硅酸盐混合的纳米层状结构材料[3]。Si3N4、Al2O3介电常数仍较低。TiO2虽然介电常数很高(80),但禁带宽度小且与衬底明显的界面缺陷限制了其作为栅介质的应用[4]。HfO2的介电常数为25,具有适合的禁带宽度(5.8eV),综合各方面性能要求,高k材料HfO2作为栅介质层得到了业内广泛的认可和应用。

英特尔公司在90nm技术节点上,栅氧化层采用了1.2nm的SiO2(图3);而在32nm技术代,采用原子层沉积技术引入了HfO2(图4)作为栅介质材料解决了栅漏电和硼穿透的问题。3nm的HfO2层的等效氧化层厚度为0.8nm,也就是说3nmHfO2与0.8nmSiO2对于栅电容的贡献、调节阈值电压的效果相同,而实际物理厚度的增加大大减弱了量子隧穿效应的影响。

 


图2  MOSFET结构示意图

 


图3  英特尔 90nm 技术节点采用1.2nm SiO2栅介质层(来源于网络)

 


图4  英特尔32nm 技术节点采用3.0nmHfO2栅介质层(来源于网络)

 

       利用高k材料代替常规的SiO2(或SiON)作为栅介质层,以及采用金属栅代替多晶硅栅的工艺称为HKMG技术,可见原子层沉积在MOSFET的HKMG技术革新中发挥了巨大的作用。


参考文献:

[1] Xuefeng Xu, Jingang Wang, Mengtao Sun. Spectralanalysis on CoOx films deposited by atomic layer deposition[J].Chemical Physics Letters,2020,742:137159

[2]温德通.集成电路制造工艺与工程应用[M].北京:机械工业出版社,2018.

[3]付盈盈.高介电薄膜材料的原子层沉积技术制备、表征及其在微电子领域的应用[D].南京:南京大学硕士学位论文,2012.

[4]王蝶.MOS器件堆栈栅结构设计、界面及电化学性能优化[D].合肥:安徽大学硕士学位论文,2020.


互连线扩散阻挡层:

      摩尔定律导致芯片中功能密度的增加,定义了每个芯片区域中互连设备的数量。随着IC的最小特征尺寸减小,有源器件密度增加。由于芯片表面上互连线所占据的面积比容纳有源器件所需的面积扩展得更快,因此器件集成变得更加苛刻。最终,最小的芯片面积受限于互连技术。这一问题是通过多层互连系统解决的,其中互连线所需的区域在两个或更多层之间共享(图5)。微处理器单元(MPU)中有源器件的功能密度非常高,金属级的数量有望达到1216。此外,随着栅极数量增多,栅极之间需要更多的连接,互连线的平均长度将增加。如果不包括全局电线,则MPU中互连的总长度预计将超过2 km / cm2。在1990年代后期,很明显地发现,互连长度的增加导致互连的电阻乘以电容(RC)时间延迟的增加,并且在四分之一微米的设备节点中,传播延迟超过了固有延迟。除RC延迟外,由于铝对电迁移的敏感性强,随着电流密度的增加,传统的铝金属化也面临着巨大的挑战。因此,铜因其较高的电迁移电阻和低电阻率逐渐取代铝工艺称为互联技术的主流技术[1]。

       互连工艺中需要使用一层阻挡层金属,它可以增强铝铜合金互连线附着在硅化物上的力,减小互连线与接触孔之间的接触电阻和应力,氮化钛还可以防止硅与铝之间相互扩散,避免铝穿刺。铝工艺中的阻挡层金属是钛(Ti)和氮化钛(TiN)。高温时Cu在Si中扩散系数较高,铜原子一旦进入硅器件,便会成为深能级受主杂质产生复合中心,使载流子寿命降低,从而导致器件失效。因此在铜互连结构中阻挡层金属更为必须[2]。铜的阻挡层金属是钽(Ta)和氮化钽(TaN)。

      随着工艺技术的不断发展,线宽的减小使得铜线的阻抗上升,电路的RC特性降低,RC延时增加。解决这一问题的最简单办法就是降低扩散阻挡层的厚度。阻挡层金属的厚度不断变薄,钽和氮化钽作为阻挡层金属的阻挡性能比钛和氮化钛好,所以在铜工艺中利用氮化钽代替氮化钛。利用PVD技术沉积的氮化钽是工业上应用最多的技术,它能较好地控制N/Ta比。但是由于PVD沉积流量的方向性和对多数金属的高粘结系数,导致制备薄膜不连续,台阶覆盖率低。CVD存在镀制薄膜较厚,成分不纯等内在缺陷。通过ALD过程,在器件尺寸小于100nm和较低的温度下,能够得到阶梯覆盖率高,原子层厚度较薄且可精确控制的铜扩散阻挡层[3]。

      目前ALD TaN技术用于铜互连阻挡层被广泛的研究。早在2002年,Kim等人[4]利用plasma-enhancedALD的方法用TaCl5,氢气和氮气等离子体在硅基底上沉积TaN薄膜。随后Kim等人[5]使用Ta金属有机物前驱体和氢等离子体技术生成了坚固且超薄的TaNx铜扩散阻挡层,定量研究了扩散阻隔性能,并且提出该层优异的阻挡性能归因于膜的纳米晶体微观结构。Furuya等人[6]用Ta(N(CH3)2)5和He/H2等离子体沉积了富Ta的TaN粘合层,克服了由于ALD阻挡层金属与Cu之间低粘附性导致的通孔产量低的问题。Dey等人[7]研究发现,在10nm节点以下的工艺技术中,当其他的金属如钌取代铜作为互联金属,ALDTaN仍能表现出优异的阻挡层性能。但是由于ALD存在生长速度较慢等问题,目前半导体产业中铜互连阻挡层仍然采用PVD的方法。但是由于ALD技术拥有PVD和CVD所无法比拟的优势,在科技工作者的共同努力下,ALD扩散阻挡层最终会被大规模应用。


图5 MPU器件分级放大横截面图[1]

 

图6 浅绿色部分(barrierlayer)为阻挡层

 

图7(a)为Ta阻挡层的能量色散X射线光谱仪(EDX)图像,(b)为Cu的EDX图像[8]


参考文献 

[1]Kai-Erik Elers. Copper Diffusion BarrierDeposition on Integrated Circuit Devices by Atomic Layer Deposition Technique.Helsinki, 2008

[2]申灿,刘雄英,黄光周.原子层沉积技术及其在半导体中的应用[J].真空,2006(04):1-6.

[3]李惠琴,陈晓勇,王成,穆继亮,许卓,杨杰,丑修建,薛晨阳,刘俊.原子层沉积技术在微纳器件中的应用研究进展[J].表面技术,2015,44(02):60-67.

[4]H. Kim, A. J. Kellock, S. M. Rossnagel. Growthof cubic-TaN thin films by plasma-enhanced atomic layer deposition[J]. Journalof Applied Physics, 2002,92:7080-7085.

[5] H. Kim, C. Detavenier, O. van der Straten,, etal., Robust diffusion barrier for Cu-interconnect technology with subnanometerthickness by metal-organic plasma-enhanced atomic layer deposition[J]. Journalof Applied Physics, 2005,98:014308.

[6] Akira Furuya, Hiroshi Tsuda, and ShinichiOgawa. Ta-rich atomic layer deposition TaN adhesion layer for Cu interconnectsby means of plasma-enhanced atomic layer deposition[J]. Journal of VacuumScience & Technology B,2005,23:979-983.

[7] Sonal Dey, Kai-Hung Yu, Steven Consiglio etal., Atomic layer deposited ultrathin metal nitride barrier layers forruthenium interconnect applications[J]. Journal of Vacuum Science &Technology A,2017,35:03E109.

[8] C.-C.Yanga, F.Baumannb, P.-C.Wang et al.,Dependence of Cu electromigration resistance on selectively deposited CVD Cocap thickness[J]. Microelectronic Engineering 2013,106:214–218

 



编辑宣扬帆,审核韩雁、邱明君、杜伟伟、周俊飞。欢迎半导体及相关领域的老师、学长们向技术专栏投稿。

联盟简介
 
缘于求是 · 芯想全球

求是缘半导体联盟是全球半导体产业生态链上的多个高校的校友、公司、组织机构、政府园区及科研院校等自愿组成的跨区域的非营利性公益组织。联盟成立于2015年11月,由浙江大学校友发起,总部位于上海,其主要职能是为半导体和相关行业的人才、技术、资金、企业运营管理、创新创业等方面提供交流合作和咨询服务的平台,致力于推动全球,特别是中国大陆区域的半导体及相关产业的发展。


目前联盟不定期举办线上、线下专题活动,有一周芯闻、名家专栏、招聘专栏、活动报道、人物访谈、技术专栏等多种资讯栏目,同时提供咨询、资源对接、市场拓展等服务。

求是缘半导体联盟 求是缘半导体联盟,是由浙江大学半导体产业校友在2015年3月31日启动,主要是为全球多个高校校友和单位提供一个在半导体产业上的技术、资金、人才、管理、职业发展生活等方面的公益性全球交流平台.
评论
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 134浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 141浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 107浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 53浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 106浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 211浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 328浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 191浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 199浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 102浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 322浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 164浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 172浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 78浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 84浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦