ADI公司的DC-DC转换器在业界有非常广泛的应用,在车载电子系统的不同场景中均能以非常高的效率实现电压转换,从而在节能的同时最大限度地减少了散热设计方面的问题。本文以三个不同场景的ADI车载DC-DC转换器为例,阐述ADI如何利用丰富的模拟技术研发设计经验,满足汽车设计师们对于汽车电力、动力及能源消耗的平衡。
LED车前灯组可以是兼具创新性和艺术创意的。远光灯和近光灯可以与时髦漂亮和独具特色的昼间行驶灯(DRL)“包裹”在一起。因为昼间行驶灯仅在远光灯和近光灯关闭时才会需要,故可使用单个LED驱动器给远光和近光LED或昼间行驶灯供电。只有在LED驱动器具有灵活的输入至输出比、而且能对输入至输出电压进行升压和降压的情况下,这种做法才会奏效。升降压型设计可满足该要求。
下图中的多光束LT8391A升降压型LED驱动器能够驱动3V至34V的LED灯串电压。这使其能驱动一个近光灯串,并通过给近光灯串添加LED以创建一个远光灯。同一个驱动器在切换之后,可驱动一个电压较高、但电流较低的DRL。从仅限近光灯的LED切换至近光/远光灯组合式灯串,就不会在输出电压或LED电流上产生尖峰脉冲。LT8391A能够在升压、4开关升降压、和降压工作区之间平稳地转换。对于转换器来说,从LED数量少的灯串变更至LED数量多的灯串时不产生LED尖峰脉冲会是棘手的难题,然而这款多光束LED灯电路则能轻松地做到这一点。
用于近光灯、远光灯和DRL灯的LT8391A多光束LED车前灯组解决方案
可以看出,LT8391A 2MHz、60V 升降压型 LED 驱动器控制器可为汽车前照灯中的LED灯串供电,该器件的特点包括其低EMI四开关架构和扩展频谱频率调制功能,用于满足CISPR 25 Class 5 EMI 规格要求。此外,该器件独特的高开关频率允许其在高于AM频段的频率条件下工作,因而所需的EMI滤波非常之少。
自动启停功能由中央控制单元协调,该控制单元监测来自所有相关传感器(包括启动电机和交流发电机)的数据。在高效的蓄电池技术和相应的发动机管理程序的支持下,启停系统在较低的温度下也能正常工作,只需短暂的预热过程便可激活。此外,大多数系统可识别临时停车和行程结束之间的差异。如果驾驶员的安全带解开,或者车门或行李箱打开,系统不会重新启动引擎。但是,当使用启停系统使引擎重新启动时,12 V电池电压有可能已经降至5 V以下,如果车载信息娱乐系统开启或其他电子设备需要高于5 V的电压时,可能会导致这些系统复位。甚至有些导航系统要求更高的输入电压工作。因此,当输入电压在引擎重新启动期间降至5 V以下,若DC-DC转换器仅具有输入电压降压功能,则需要重新设置导航或音乐播放器系统。要想使电子控制单元ECU稳定工作,就需要升降压转换器。
ADI三路输出同步DC/DC控制器LTC7815在单个封装中集成了升压控制器和两个降压控制器,高效率同步升压转换器给两个下游同步转换器馈电,这在汽车启停系统中是非常有用的特性。
LTC7815启停应用原理图,工作频率为2.1 MHz
LTC7815在启动期间可以以4.5V至38V的输入电压工作,并在启动之后保持工作直到输入电压低至2.5V。同步升压转换器可产生高达60 V的输出电压,在输入电压够高时,它可让同步开关完全导通,以直通输入电压,实现效率最大化。两个降压转换器可产生0.8V至24V的输出电压,且整个系统可实现高达95%的效率。低至45 ns的最短导通时间可在2 MHz开关操作中实现高降压比转换,从而避开对噪声敏感的关键频段(如AM无线电),并可使用较小的外部组件。
新提出的汽车标准(称为LV 148)将二级48 V总线与现有汽车12 V系统合而为一。此新标准要求12 V总线继续为点火、照明、信息娱乐和音频系统供电。而48 V总线将为主动底盘系统、空调压缩机、可调悬架、电动增压器/涡轮增压器供电,甚至还将支持制动能量回收。在车辆中增加一个48V供电网络并非没有重大影响。电子控制单元(ECU)将受影响,且需要将其工作范围调至更高电压。
LT8228是ADI公司最近推出的一款双向DC-DC控制器,通过使用相同的外部功率组件进行降压和升压,其可提高48V/12V双电池DC-DC汽车系统的性能、控制功能并简化设计。它可根据需要在48 V总线至12 V总线降压模式或12 V至48 V升压模式下工作。启动汽车或需要额外电源时,LT8228允许两个电池同时向同一负载供电。功率转换设计人员利用这个功能多样的双向转换器,可以轻松地配置未来全自动驾驶汽车所需的12V和48 V电池系统。
LT8228采用与降压转换相同的外部功率组件进行升压转换,是一款具有独立补偿网络的100 V双向恒流或恒压同步降压或升压控制器。电源的流动方向由LT8228自动决定,或由外部控制。输入和输出保护MOSFET用于防止出现负电压,控制浪涌电流,并在开关MOSFET短路等故障条件下在端子之间提供隔离。在降压模式下,V1端子的MOSFET保护可防止出现反向电流。在升压模式下,相同的MOSFET通过一个可调整的计时器断路器控制输出浪涌电流并进行自我保护。
简化的双向电池备用系统配置中的LT8228
此外,LT8228还具有双向输入和输出限流和独立电流监控功能。无主、容错均流允许增加或删除任何并联的LT8228,同时确保均流精度。当禁用单个LT8228或在故障条件下,它会停止向平均总线输出电流,从而使均流方案具有容错能力。
ADI五大系列设计工具,用过的人都说好~